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The Problem

The Game:

Flip a fair coin repeatedly until two consecutive
heads appear, stop.

The Problem:

I What is the probability that the game will ever end?
(Intuitively, this is big, but consider HTHTHTHT. . ., or
TTTTTT. . ..)
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The Problem

The Game:

Flip a fair coin repeatedly until two consecutive
heads appear, stop.

The Problem(s):

I What is the probability that the game will ever end?
(Intuitively, this is big, but consider HTHTHTHT..., or
TTTTTT...)

I What is the probability that the game ends after exactly n
flips?
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Non–Counting Arguments

Yes, neither HHH nor HHT can actually happen. So, the
probability of seeing THH is really 1/6.

Well, not exactly. The probability of seeing THH is 1/6 times the
probability that the game didn’t end in exactly two flips.

So, actually, the probability of seeing THH is:

1

6
× 6

8
=

1

8
.

This had to work out—because the coin doesn’t know the rules of
the game.



Counting Arguments

n = 2
HH TH
HT TT

Each event is equally likely, so P2 = 1/4.

n=3

HHH THH
HHT THT
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Each event is equally likely, so P3 = 1/8.

n=4
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Each event is equally likely, so P4 = 2/16.
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An Unnecessary(?) Aside

The Fibonacci Numbers — 1202

The Rules for Rabbit Reproduction

1. Gestation period is one month.

2. Rabbits born in male/female pairs.

3. Rabbits reach sexual maturity in one month.

4. Rabbits are always pregnant.
(And never die.)

Start with one newborn pair, how many pairs will you have n
months later?
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An Unnecessary(?) Aside

The Fibonacci Numbers — 1202
Month: 0 1 2 3 4 5
Mature Pairs 0 1 1 2 3 5
Immature Pairs 1 0 1 1 2 3

Total Pairs 1 1 2 3 5 8

Thus, Fn+1 = Fn + Fn−1.
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An Answer

Theorem
The sequence xn is the Fibonacci sequence.

Example

n=6
THTTHH HTHTHH
TTHTHH HTTTHH
TTTTHH

So, x6 ≤ x5 + x4.

Conversely
THTTHH HTHTHH
TTHTHH HTTTHH
TTTTHH

So, x6 ≥ x5 + x4.
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I What is the probability that the game ends after two or three
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The Miracle

Definition
A miracle is the simultaneous occurrence of two or more
zero-probability events.

I The series converged. (And I could prove it!)

I We could find the value to which it converged.

I That value was rational.

I That value was the simplest possible rational.
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The Very Good Reason

g(x) =
∞∑
k=0

Fkxk = 1 + x + 2x2 + 3x3 + 5x4 + . . .

x g(x) =
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Fkxk+1 = x + x2 + 2x3 + 3x4 + . . .

x2g(x) =
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So,
g(x)− xg(x)− x2g(x) = 1

g(x) =
1

1− x − x2
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Technicalities

∞∑
k=0

Fkxk = 1 + x + 2x2 + 3x3 + 5x4 + . . .

This is the Taylor series about 0 for 1
1−x−x2 .

The interval of convergence is
(−1

λ ,
1
λ

)
, where λ = 1+

√
5

2 , i.e. the
golden mean.

(NB The radius of convergence, 1
λ , is approximately .618, so 1

2 is
comfortably inside.)
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Two Great Tastes That Taste Great Together

The function, g(x) = 1
1−x−x2 , is called the generating function for

the Fibonacci numbers.



Turning the Page
Rewrite g(x) using partial fractions:

1

1− x − x2
=

A

1− λx
+

B

1 + (λ− 1)x

Solve for A and B:

A =
λ√
5

B =
λ− 1√

5

By the known formula for geometric series:

A

1− λx
=
∞∑
k=0

A (λx)k

Similarly,

B

1 + (λ− 1)x
=
∞∑
k=0

B(−1)k ((λ− 1)x)k
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Never in a Million Years
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Recalling the values of A and B,
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Fkxk =
∞∑
k=0

[
λk+1

√
5

+
(−1)k(λ− 1)k+1

√
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Power series expansions are unique! So,

Fk =
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√
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(−1)k(λ− 1)k+1

√
5
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Be wise, generalize!

Heads Numerators Generating
and Recursion Function

One 1, 1, 1, 1, . . . 1
1−x

an = an−1
Two 1, 1, 2, 3, . . . 1

1−x−x2
an = an−1 + an−2

Three 1, 1, 2, 4, 7, . . . 1
1−x−x2−x3

an = an−1 + an−2 + an−3
Four 1, 1, 2, 4, 8, 15, . . . 1

1−x−x2−x3−x4
an = an−1 + an−2 + an−3 + an−4

And so on . . .



“Suppose you had a three-sided coin?”

Heads Numerators Generating
and Recursion Function

One 1, 2, 4, 8, . . . 1
1−2x

an = 2an−1
Two 1, 2, 6, 16, 48, . . . 1

1−2x−2x2
an = 2(an−1 + an−2)

Three 1, 2, 6, 18, 52, 152, . . . 1
1−2x−2x2−2x3

an = 2(an−1 + an−2 + an−3)
Four 1, 2, 6, 18, 54, 160, . . . 1

1−2x−2x2−2x3−2x4
an = 2(an−1 + an−2 + an−3 + an−4)

Homework: Do the n consecutive heads from an m-sided coin
problem.



Fibonacci Fractions

Do the long division problem:

10, 000

9, 899
=

1.010203050813213455 . . .

What just happened?

g

(
1

100

)
= 1 +

1

100
+

2

(100)2
+

3

(100)3
+ . . .

= 1 + .01 + .0002 + .000003 + . . .

g

(
1

1000

)
=

1, 000, 000

998, 999
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Multiplying Weirdness

Recall

Fk =
1√
5

[
λk+1 + (−1)k(λ− 1)k+1

]

Here’s a picture of those fractional parts:

Pictured is the fractional part of 1√
5
λk , k = 1, 2, . . . , 15.
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Your Real Homework

The picture for the fractional part of 1.5n for n = 10 . . . 80. (This
is what we expect to see.)



Your Real Homework

Conjecture

There are not very many real numbers, γ, that have the property
that there exists a constant C so that the sequence consisting of
the fractional parts of Cγn, n = 1, 2, . . . has only finitely many
limit points.

Not very many = measure zero
= first category
= nowhere dense
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Your Real Homework: Hints

The number 1 +
√

2 = p is even better than the golden mean.

p1 ≈ 2.41421

p2 ≈ 5.82842

p3 ≈ 14.07106

. . .

p8 ≈ 1153.99913

p9 ≈ 2786.00035

p10 ≈ 6725.99985



Your Real Homework: Hints

p1 = 1 +
√

2

p2 = 3 + 2
√

2

p3 = 7 + 5
√

2

. . .

p8 = 577 + 408
√

2

p9 = 1393 + 985
√

2

p10 = 3363 + 2378
√

2



A Final Word

Thanks to the local organizers: Adam Coffman, Rob Merkovsky
and Marc Lipman.

Thanks to IUPU–Fort Waye.

Thank you for your kind attention.
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