Two Heads Are Better Than None Or, Me and the Fibonaccis

> Steve Kennedy (with help from Matt Stafford) Carleton College and MAA Books

Problems are the lifeblood of mathematics. — David Hilbert

Indiana MAA Spring Section Meeting 2014

The Problem

The Game:

Flip a fair coin repeatedly until two consecutive heads appear, stop.

The Problem

The Game:

Flip a fair coin repeatedly until two consecutive heads appear, stop.

The Problem:

 What is the probability that the game will *ever* end? (Intuitively, this is big, but consider HTHTHTHT..., or TTTTTT....)

The Problem

The Game:

Flip a fair coin repeatedly until two consecutive heads appear, stop.

The Problem(s):

- What is the probability that the game will *ever* end? (Intuitively, this is big, but consider HTHTHTHT..., or TTTTTT...)
- What is the probability that the game ends after exactly n flips?

$$n = 2$$
 $\begin{array}{c} \mathsf{HH} & \mathsf{TH} \\ \mathsf{HT} & \mathsf{TT} \end{array}$
Each event equally likely, so $P_2 = 1/4$.

n=2 $\begin{array}{c} {
m HH} & {
m TH} \\ {
m HT} & {
m TT} \end{array}$ Each event is equally likely, so $P_2=1/4.$

 $n=3 \begin{array}{c} HHH & THH \\ HHT & THT \\ HTH & TTH \\ HTT & TTT \\ Each event is equally likely, so <math>P_3 = 1/8. \end{array}$

Counting Arguments: Wait just one minute!

n = 2 $\begin{array}{c} \mathsf{HH} & \mathsf{TH} \\ \mathsf{HT} & \mathsf{TT} \end{array}$ Each event is equally likely, so $P_2 = 1/4$.

n=3 $\begin{array}{c} HHH & THH \\ HHT & THT \\ HTH & TTH \\ HTT & TTT \\ Each event is equally likely, so <math>P_3 = 1/8. \end{array}$

Non–Counting Arguments

Yes, neither HHH nor HHT can actually happen. So, the probability of seeing THH is really 1/6. Right?

Neither HHH nor HHT can actually happen. So, the probability of seeing THH is really 1/6?

Well, not exactly. The probability of seeing THH is 1/6 times the probability that the game didn't end in exactly two flips.

Non-Counting Arguments

Neither HHH nor HHT can actually happen. So, the probability of seeing THH is really 1/6?

Well, not exactly. The probability of seeing THH is 1/6 times the probability that the game didn't end in exactly two flips.

So, actually, the probability of seeing THH is:

$$\frac{1}{6} \times \frac{6}{8}$$

Non–Counting Arguments

Yes, neither HHH nor HHT can actually happen. So, the probability of seeing THH is really 1/6.

Well, not exactly. The probability of seeing THH is 1/6 times the probability that the game didn't end in exactly two flips.

So, actually, the probability of seeing THH is:

$$\frac{1}{6} \times \frac{6}{8} = \frac{1}{8}.$$

This had to work out.

Non–Counting Arguments

Yes, neither HHH nor HHT can actually happen. So, the probability of seeing THH is really 1/6.

Well, not exactly. The probability of seeing THH is 1/6 times the probability that the game didn't end in exactly two flips.

So, actually, the probability of seeing THH is:

$$\frac{1}{6} \times \frac{6}{8} = \frac{1}{8}.$$

This had to work out—because the coin doesn't know the rules of the game.

n = 2 $\begin{array}{c} \mathsf{HH} & \mathsf{TH} \\ \mathsf{HT} & \mathsf{TT} \end{array}$ Each event is equally likely, so $P_2 = 1/4$.

n=3 $\begin{array}{c} HHH & THH \\ HHT & THT \\ HTH & TTH \\ HTT & TTT \\ Each event is equally likely, so <math>P_3 = 1/8.$

n=4 $\begin{array}{c} HHHH & HTHH & THHH & TTHH \\ HHHT & HTHT & THHT & TTHT \\ HHTH & HTTH & THTH & TTTH \\ HHTT & HTTT & THTT & TTTT \\ Each event is equally likely, so <math>P_4 = 2/16. \end{array}$

n=5

HTHHH	ТНННН	TTHHH
HTHHT	THHHT	TTHHT
HTHTH	THHTH	TTHTH
HTHTT	THHTT	TTHTT
HTTHH	THTHH	ТТТНН
HTTHT	THTHT	TTTHT
HTTTH	THTTH	TTTTH
HTTTT	THTTT	TTTTT
	HTHHH HTHHT HTHTH HTHTT HTTHH HTTHT HTTTH HTTTH	HTHHH THHHH HTHHT THHHT HTHTH THHTH HTHTT THHTT HTTHH THHTH HTTHH THTHH HTTHH THTHH HTTHH THTHH HTTHH THTHH HTTHT THTHH HTTTH THTHH HTTTH THTTH HTTTH THTTH

So,
$$P_5 = 3/32$$
.

n=5

ННННН	HTHHH	тнннн	TTHHH
ННННТ	HTHHT	THHHT	TTHHT
HHHTH	HTHTH	THHTH	TTHTH
HHHTT	HTHTT	THHTT	TTHTT
ННТНН	HTTHH	THTHH	TTTHH
HHTHT	HTTHT	THTHT	TTTHT
ННТТН	HTTTH	THTTH	TTTTH
HHTTT	HTTTT	THTTT	TTTTT

So, $P_5 = 3/32$.

n=6 HTHTHH, HTTTHH, THTTHH, TTHTHH, TTTTHH
 So, $P_6=5/64.$

ННННН	HTHHH	тнннн	TTHHH
HHHHT	HTHHT	THHHT	TTHHT
HHHTH	HTHTH	THHTH	TTHTH
HHHTT	HTHTT	THHTT	TTHTT
HHTHH	HTTHH	THTHH	TTTHH
HHTHT	HTTHT	THTHT	TTTHT
HHTTH	HTTTH	THTTH	TTTTH
HHTTT	HTTTT	THTTT	TTTTT

So, $P_5 = 3/32$.

n=6 HTHTHH, HTTTHH, THTTHH, TTHTHH, TTTTHH
So, $P_6=5/64.$

n=7

n=5

n=5

ННННН	HTHHH	ТНННН	TTHHH
HHHHT	HTHHT	THHHT	TTHHT
HHHTH	HTHTH	THHTH	TTHTH
HHHTT	HTHTT	THHTT	TTHTT
HHTHH	HTTHH	THTHH	TTTHH
HHTHT	HTTHT	THTHT	TTTHT
HHTTH	HTTTH	THTTH	TTTTH
HHTTT	HTTTT	THTTT	TTTTT

So, $P_5 = 3/32$.

- n=6 HTHTHH, HTTTHH, THTTHH, TTHTHH, TTTTHH
 So, $P_6=5/64.$
- n=7 Homework

Search for Pattern

$$\frac{1}{4}, \frac{1}{8}, \frac{2}{16}, \frac{3}{32}, \frac{5}{64}, \ldots$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ = 差 = のQ()

Search for Pattern

$$\frac{1}{4}, \frac{1}{8}, \frac{2}{16}, \frac{3}{32}, \frac{5}{64}, \ldots$$

$$P_n = \frac{x_n}{2^n}$$
, What's x_n ?

Search for Pattern

$$\frac{1}{4}, \frac{1}{8}, \frac{2}{16}, \frac{3}{32}, \frac{5}{64}, \ldots$$

$$P_n = \frac{x_n}{2^n}$$
, What's x_n ?

 $x_n = 1, 1, 2, 3, 5, 8, 13, 21, \ldots$

◆□▶ ◆昼▶ ◆昼▶ ◆昼▶ → 吾 → めんの

The Fibonacci Numbers — 1202

The Rules for Rabbit Reproduction

1. Gestation period is one month.

The Fibonacci Numbers — 1202

The Rules for Rabbit Reproduction

- 1. Gestation period is one month.
- 2. Rabbits born in male/female pairs.

The Fibonacci Numbers — 1202

The Rules for Rabbit Reproduction

- 1. Gestation period is one month.
- 2. Rabbits born in male/female pairs.
- 3. Rabbits reach sexual maturity in one month.

The Fibonacci Numbers — 1202

The Rules for Rabbit Reproduction

- 1. Gestation period is one month.
- 2. Rabbits born in male/female pairs.
- 3. Rabbits reach sexual maturity in one month.
- 4. Rabbits are always pregnant. (And never die.)

The Fibonacci Numbers — 1202

The Rules for Rabbit Reproduction

- 1. Gestation period is one month.
- 2. Rabbits born in male/female pairs.
- 3. Rabbits reach sexual maturity in one month.
- 4. Rabbits are always pregnant. (And never die.)

Start with one newborn pair, how many pairs will you have *n* months later?

Month:	0	1	2	3	4	5
Mature Pairs	0					
Immature Pairs	1					
Total Pairs	1					

Month:	0	1	2	3	4	5
Mature Pairs	0	1				
Immature Pairs	1					
Total Pairs	1					

Month:	0	1	2	3	4	5
Mature Pairs	0	1				
Immature Pairs	1	0				
Total Pairs	1	1				

Month:	0	1	2	3	4	5
Mature Pairs	0	1	1			
Immature Pairs	1	0	1			
Total Pairs	1	1	2			

Month:	0	1	2	3	4	5
Mature Pairs	0	1	1	2		
Immature Pairs	1	0	1	1		
Total Pairs	1	1	2	3		

Month:	0	1	2	3	4	5
Mature Pairs	0	1	1	2	3	5
Immature Pairs	1	0	1	1	2	3
Total Pairs	1	1	2	3	5	8

The Fibonacci Numbers — 1202

Month:	0	1	2	3	4	5
Mature Pairs	0	1	1	2	3	5
Immature Pairs	1	0	1	1	2	3
Total Pairs	1	1	2	3	5	8

Thus, $F_{n+1} = F_n + F_{n-1}$.

An Answer

Theorem The sequence x_n is the Fibonacci sequence.

An Answer

Theorem The sequence x_n is the Fibonacci sequence.

Example n=6 THTTHH HTHTHH TTHTHH HTTTHH TTTTHH

So, $x_6 \le x_5 + x_4$.

An Answer

Theorem The sequence x_n is the Fibonacci sequence.

Example		
·	ТНТТНН	НТНТНН
n=6	ТТНТНН	НТТТНН
	ТТТТНН	
So, $x_6 \le x_5$	+ <i>x</i> ₄ .	

	*HTTHH	**HTHH
Conversely	*THTHH	**TTHH
	*TTTHH	
An Answer

Theorem The sequence x_n is the Fibonacci sequence.

Example		
	ТНТТНН	НТНТНН
n=6	ТТНТНН	НТТТНН
	ттттнн	

So, $x_6 \le x_5 + x_4$.

Conversely THTTHH HTHTHH TTHTHH HTTTHH TTTTHH

So, $x_6 \ge x_5 + x_4$.

What is the probability that the game ends after two or three flips?

What is the probability that the game ends after two or three flips?

$$\frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$

What is the probability that the game ends after two or three flips?

$$\frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$

What is the probability that the game ends in four or fewer flips?

What is the probability that the game ends after two or three flips?

$$\frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$

What is the probability that the game ends in four or fewer flips?

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} = \frac{1}{2}$$

What is the probability that the game ends after two or three flips?

$$\frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$

What is the probability that the game ends in four or fewer flips?

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} = \frac{1}{2}$$

What is the probability that the game ends in twenty or fewer flips?

What is the probability that the game ends after two or three flips?

$$\frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$

What is the probability that the game ends in four or fewer flips?

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} = \frac{1}{2}$$

What is the probability that the game ends in twenty or fewer flips?

$$\sum_{n=2}^{20} P_n \approx .983$$

Original Question

What is the probability that the game ever ends?

Original Question

What is the probability that the game ever ends?

$$\lim_{n \to \infty} \sum_{k=2}^{n} P_n = \sum_{k=0}^{\infty} \frac{F_k}{2^{k+2}}$$

What is the probability that the game ever ends?

$$\lim_{n\to\infty}\sum_{k=2}^n P_n = \sum_{k=0}^\infty \frac{F_k}{2^{k+2}}$$

Does this series converge?

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots = S$$

◆□▶ ◆■▶ ◆臣▶ ◆臣▶ ─臣 ─ のへの

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots = S$$
$$\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{2}$$

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots = S$$
$$\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{2}$$
$$\frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{8}$$

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots = S$$
$$\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{2}$$
$$\frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{8}$$
$$\frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{16}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ○○○

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots = S$$

$$\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{2}$$

$$\frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{8}$$

$$\frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{16}$$

$$\frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{32}$$

$$\frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{32}$$

▲口▶ ▲歴▶ ★臣▶ ★臣▶ ―臣 … のへの

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots = S$$

$$\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{2}$$

$$\frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{8}$$

$$\frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{16}$$

$$\frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{32}$$

$$\frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{32}$$

$$\frac{1}{128} + \dots = \frac{1}{64}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 のへの

. . .

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots = S$$

$$\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{2}$$

$$\frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{8}$$

$$\frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{16}$$

$$\frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{32}$$

$$\frac{1}{64} + \frac{1}{128} + \dots = \frac{1}{32}$$

$$\frac{1}{128} + \dots = \frac{1}{64}$$

$$\dots$$

So,
$$S = \frac{1}{2} + \frac{1}{8} + \frac{1}{16} + \frac{2}{32} + \frac{3}{64} + \dots$$

Recall,

$$S = \frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots$$

Recall,

$$S = \frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots$$

We just decided,

$$S = \frac{1}{2} + \frac{1}{8} + \frac{1}{16} + \frac{2}{32} + \frac{3}{64} + \frac{5}{128} + \dots$$

Recall,

$$S = \frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots$$

We just decided,

1

So,

$$S = \frac{1}{2} + \frac{1}{8} + \frac{1}{16} + \frac{2}{32} + \frac{3}{64} + \frac{3}{128} + \dots$$

2

Б

$$S = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{3}{64} + \dots \right)$$
$$S = \frac{1}{2} + \frac{1}{2}S$$

Recall,

$$S = \frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \frac{8}{128} + \dots$$

We just decided,

So,

$$S = \frac{1}{2} + \frac{1}{8} + \frac{1}{16} + \frac{2}{32} + \frac{3}{64} + \frac{5}{128} + \dots$$

$$S = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \dots \right)$$
$$S = \frac{1}{2} + \frac{1}{2}S$$
$$S = 1$$

$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \ldots = 1$

$$\sum_{n=2}^{\infty} \frac{F_{n-2}}{2^n} = 1$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ○○○

 $\sum_{n=2}^{\infty} \frac{F_{n-2}}{2^n} = 1$

 $\sum_{n=2}^{\infty} \frac{F_{n-2}}{2^n} = 1!!!$

THIS IS A MIRACLE!!!

Definition

Definition

A *miracle* is the simultaneous occurrence of two or more zero-probability events.

The series converged.

Definition

A *miracle* is the simultaneous occurrence of two or more zero-probability events.

The series converged. (And I could prove it!)

Definition

- The series converged. (And I could prove it!)
- We could find the value to which it converged.

Definition

- The series converged. (And I could prove it!)
- We could find the value to which it converged.
- That value was rational.

Definition

- The series converged. (And I could prove it!)
- We could find the value to which it converged.
- That value was rational.
- That value was the simplest possible rational.

The Very Good Reason

$$g(x) = \sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$

The Very Good Reason

$$g(x) = \sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$
$$x g(x) = \sum_{k=0}^{\infty} F_k x^{k+1} = x + x^2 + 2x^3 + 3x^4 + \dots$$

The Very Good Reason

$$g(x) = \sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$
$$x g(x) = \sum_{k=0}^{\infty} F_k x^{k+1} = x + x^2 + 2x^3 + 3x^4 + \dots$$
$$x^2 g(x) = \sum_{k=0}^{\infty} F_k x^{k+2} = x^2 + x^3 + 2x^4 + \dots$$
$$g(x) = \sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$
$$x g(x) = \sum_{k=0}^{\infty} F_k x^{k+1} = x + x^2 + 2x^3 + 3x^4 + \dots$$
$$x^2 g(x) = \sum_{k=0}^{\infty} F_k x^{k+2} = x^2 + x^3 + 2x^4 + \dots$$

ς	~	
J	U	1

$$g(x) - xg(x) - x^2g(x) = 1$$

$$g(x) = \sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$
$$x g(x) = \sum_{k=0}^{\infty} F_k x^{k+1} = x + x^2 + 2x^3 + 3x^4 + \dots$$
$$x^2 g(x) = \sum_{k=0}^{\infty} F_k x^{k+2} = x^2 + x^3 + 2x^4 + \dots$$

So,

$$g(x) - xg(x) - x^2g(x) = 1$$
$$g(x) = \frac{1}{1 - x - x^2}$$

$$g(x) = \frac{1}{1 - x - x^2}$$

$$g(x) = \frac{1}{1 - x - x^2}$$

$$g(x) = \sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$

$$g(x) = \frac{1}{1 - x - x^2}$$

$$g(x) = \sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$

$$g\left(\frac{1}{2}\right) = \sum_{k=0}^{\infty} F_k\left(\frac{1}{2}\right)^k = 1 + \frac{1}{2} + 2\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right)^3 + 5\left(\frac{1}{2}\right)^4 + \dots$$

$$g(x) = \frac{1}{1 - x - x^2}$$

$$g(x) = \sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$

$$g\left(\frac{1}{2}\right) = \sum_{k=0}^{\infty} F_k\left(\frac{1}{2}\right)^k = 1 + \frac{1}{2} + 2\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right)^3 + 5\left(\frac{1}{2}\right)^4 + \dots$$
$$= 1 + \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{5}{16} + \dots$$

$$g(x) = \frac{1}{1 - x - x^2}$$

$$g(x) = \sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$

$$g\left(\frac{1}{2}\right) = \sum_{k=0}^{\infty} F_k\left(\frac{1}{2}\right)^k = 1 + \frac{1}{2} + 2\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right)^3 + 5\left(\frac{1}{2}\right)^4 + \dots$$
$$= 1 + \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{5}{16} + \dots$$
$$= 4\left(\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \dots\right)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Technicalities

 $\sum_{k=1}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$ k=0

Technicalities

$$\sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$

This is the Taylor series about 0 for $\frac{1}{1-x-x^2}$.

The interval of convergence is $\left(\frac{-1}{\lambda}, \frac{1}{\lambda}\right)$, where $\lambda = \frac{1+\sqrt{5}}{2}$, i.e. the golden mean.

Technicalities

$$\sum_{k=0}^{\infty} F_k x^k = 1 + x + 2x^2 + 3x^3 + 5x^4 + \dots$$

This is the Taylor series about 0 for $\frac{1}{1-x-x^2}$.

The interval of convergence is $\left(\frac{-1}{\lambda}, \frac{1}{\lambda}\right)$, where $\lambda = \frac{1+\sqrt{5}}{2}$, i.e. the golden mean.

(NB The radius of convergence, $\frac{1}{\lambda}$, is approximately .618, so $\frac{1}{2}$ is comfortably inside.)

Two Great Tastes That Taste Great Together

The function, $g(x) = \frac{1}{1-x-x^2}$, is called the generating function for the Fibonacci numbers.

Rewrite g(x) using partial fractions:

$$\frac{1}{1 - x - x^2} = \frac{A}{1 - \lambda x} + \frac{B}{1 + (\lambda - 1)x}$$

Rewrite g(x) using partial fractions:

$$\frac{1}{1 - x - x^2} = \frac{A}{1 - \lambda x} + \frac{B}{1 + (\lambda - 1)x}$$

Solve for A and B:

$$A = \frac{\lambda}{\sqrt{5}} \qquad \qquad B = \frac{\lambda - 1}{\sqrt{5}}$$

Rewrite g(x) using partial fractions:

$$\frac{1}{1 - x - x^2} = \frac{A}{1 - \lambda x} + \frac{B}{1 + (\lambda - 1)x}$$

Solve for A and B:

$$A = rac{\lambda}{\sqrt{5}}$$
 $B = rac{\lambda - 1}{\sqrt{5}}$

By the known formula for geometric series:

$$\frac{A}{1-\lambda x} = \sum_{k=0}^{\infty} A(\lambda x)^k$$

Rewrite g(x) using partial fractions:

$$\frac{1}{1 - x - x^2} = \frac{A}{1 - \lambda x} + \frac{B}{1 + (\lambda - 1)x}$$

Solve for A and B:

$$A = \frac{\lambda}{\sqrt{5}} \qquad \qquad B = \frac{\lambda - 1}{\sqrt{5}}$$

By the known formula for geometric series:

$$\frac{A}{1-\lambda x} = \sum_{k=0}^{\infty} A(\lambda x)^k$$

Similarly,

$$\frac{B}{1+(\lambda-1)x} = \sum_{k=0}^{\infty} B(-1)^k \left((\lambda-1)x \right)^k$$

Never in a Million Years

$$\frac{1}{1-x-x^2} = \sum_{k=0}^{\infty} A(\lambda x)^k + \sum_{k=0}^{\infty} B(-1)^k ((\lambda - 1)x)^k$$

Never in a Million Years

$$\frac{1}{1-x-x^2} = \sum_{k=0}^{\infty} A(\lambda x)^k + \sum_{k=0}^{\infty} B(-1)^k ((\lambda - 1)x)^k$$

Recalling the values of A and B,

$$\sum_{k=0}^{\infty} F_k x^k = \sum_{k=0}^{\infty} \left[\frac{\lambda^{k+1}}{\sqrt{5}} + \frac{(-1)^k (\lambda - 1)^{k+1}}{\sqrt{5}} \right] x^k$$

Never in a Million Years

$$\frac{1}{1-x-x^2} = \sum_{k=0}^{\infty} A(\lambda x)^k + \sum_{k=0}^{\infty} B(-1)^k ((\lambda - 1)x)^k$$

Recalling the values of A and B,

$$\sum_{k=0}^{\infty} F_k x^k = \sum_{k=0}^{\infty} \left[\frac{\lambda^{k+1}}{\sqrt{5}} + \frac{(-1)^k (\lambda - 1)^{k+1}}{\sqrt{5}} \right] x^k$$

Power series expansions are unique! So,

$$F_k = rac{\lambda^{k+1}}{\sqrt{5}} + rac{(-1)^k (\lambda - 1)^{k+1}}{\sqrt{5}}$$

Be wise, generalize!

Heads	Numerators	Generating
	and Recursion	Function
One	$1, 1, 1, 1, \dots$	$\frac{1}{1-x}$
	$a_n = a_{n-1}$	
Two	$1, 1, 2, 3, \ldots$	$\frac{1}{1-x-x^2}$
	$a_n = a_{n-1} + a_{n-2}$	
Three	$1, 1, 2, 4, 7, \ldots$	$\frac{1}{1-x-x^2-x^3}$
	$a_n = a_{n-1} + a_{n-2} + a_{n-3}$	
Four	$1, 1, 2, 4, 8, 15, \ldots$	$\frac{1}{1-x-x^2-x^3-x^4}$
	$a_n = a_{n-1} + a_{n-2} + a_{n-3} + a_{n-4}$	

And so on . . .

"Suppose you had a three-sided coin?"

Heads	Numerators	Generating
	and Recursion	Function
One	1, 2, 4, 8,	$\frac{1}{1-2x}$
	$a_n=2a_{n-1}$	
Two	$1, 2, 6, 16, 48, \ldots$	$\frac{1}{1-2x-2x^2}$
	$a_n = 2(a_{n-1} + a_{n-2})$	
Three	$1, 2, 6, 18, 52, 152, \ldots$	$\frac{1}{1-2x-2x^2-2x^3}$
	$a_n = 2(a_{n-1} + a_{n-2} + a_{n-3})$	
Four	$1, 2, 6, 18, 54, 160, \ldots$	$\frac{1}{1-2x-2x^2-2x^3-2x^4}$
	$a_n = 2(a_{n-1} + a_{n-2} + a_{n-3} + a_{n-4})$	

Homework: Do the *n* consecutive heads from an *m*-sided coin problem.

Do the long division problem:

 $\frac{10,000}{9,899} =$

Do the long division problem:

$$\frac{10,000}{9,899} = 1.010203050813213455\ldots$$

Do the long division problem:

$$\frac{10,000}{9,899} = 1.010203050813213455\ldots$$

What just happened?

$$g\left(\frac{1}{100}\right) = 1 + \frac{1}{100} + \frac{2}{(100)^2} + \frac{3}{(100)^3} + \dots$$
$$= 1 + .01 + .0002 + .000003 + \dots$$

Do the long division problem:

$$\frac{10,000}{9,899} = 1.010203050813213455\ldots$$

What just happened?

$$g\left(\frac{1}{100}\right) = 1 + \frac{1}{100} + \frac{2}{(100)^2} + \frac{3}{(100)^3} + \dots$$
$$= 1 + .01 + .0002 + .000003 + \dots$$
$$g\left(\frac{1}{1000}\right) = \frac{1,000,000}{998,999}$$

Multiplying Weirdness

Recall

$$F_k = rac{1}{\sqrt{5}} \left[\lambda^{k+1} + (-1)^k (\lambda - 1)^{k+1}
ight]$$

Multiplying Weirdness

Recall

$$\mathcal{F}_k = rac{1}{\sqrt{5}} \left[\lambda^{k+1} + (-1)^k (\lambda-1)^{k+1}
ight]$$

Here's a picture of those fractional parts:

Pictured is the fractional part of $\frac{1}{\sqrt{5}}\lambda^k$, k = 1, 2, ..., 15.

Your Real Homework

The picture for the fractional part of 1.5^n for n = 10...80. (This is what we expect to see.)

Your Real Homework

Conjecture

There are not very many real numbers, γ , that have the property that there exists a constant C so that the sequence consisting of the fractional parts of $C\gamma^n$, n = 1, 2, ... has only finitely many limit points.

Your Real Homework

Conjecture

There are not very many real numbers, γ , that have the property that there exists a constant C so that the sequence consisting of the fractional parts of $C\gamma^n$, n = 1, 2, ... has only finitely many limit points.

Not very many = measure zero = first category = nowhere dense

Your Real Homework: Hints

The number $1 + \sqrt{2} = p$ is even better than the golden mean.

$$p^{1} \approx 2.41421$$

 $p^{2} \approx 5.82842$
 $p^{3} \approx 14.07106$
...
 $p^{8} \approx 1153.99913$
 $p^{9} \approx 2786.00035$
 $p^{10} \approx 6725.99985$

Your Real Homework: Hints

$$p^{1} = 1 + \sqrt{2}$$

$$p^{2} = 3 + 2\sqrt{2}$$

$$p^{3} = 7 + 5\sqrt{2}$$
...
$$p^{8} = 577 + 408\sqrt{2}$$

$$p^{9} = 1393 + 985\sqrt{2}$$

$$p^{10} = 3363 + 2378\sqrt{2}$$

▲□▶ ▲□▶ ▲≧▶ ▲≧▶ | 差| のへの)

Thanks to the local organizers: Adam Coffman, Rob Merkovsky and Marc Lipman.

Thanks to the local organizers: Adam Coffman, Rob Merkovsky and Marc Lipman.

Thanks to IUPU-Fort Waye.

Thanks to the local organizers: Adam Coffman, Rob Merkovsky and Marc Lipman.

Thanks to IUPU-Fort Waye.

Thank you for your kind attention.