Two Heads Are Better Than None Or, Me and the Fibonaccis

Steve Kennedy (with help from Matt Stafford)
Carleton College and MAA Books

Problems are the lifeblood of mathematics.

- David Hilbert

Indiana MAA Spring Section Meeting 2014

The Problem

The Game:

Flip a fair coin repeatedly until two consecutive heads appear, stop.

The Problem

The Game:

Flip a fair coin repeatedly until two consecutive heads appear, stop.

The Problem:
-What is the probability that the game will ever end? (Intuitively, this is big, but consider HTHTHTHT..., or TTTTTT....)

The Problem

The Game:

Flip a fair coin repeatedly until two consecutive heads appear, stop.

The Problem(s):

- What is the probability that the game will ever end? (Intuitively, this is big, but consider HTHTHTHT..., or TTTTTT...)
- What is the probability that the game ends after exactly n flips?

Counting Arguments

$$
\begin{array}{lll}
n=2 & \text { HH } & \text { TH } \\
& \text { HT } & \text { TT }
\end{array}
$$

Each event equally likely, so $P_{2}=1 / 4$.

Counting Arguments

$$
\begin{array}{lll}
n=2 & \text { HH } & \text { TH } \\
& \text { HT } & \text { TT }
\end{array}
$$

Each event is equally likely, so $P_{2}=1 / 4$.

	HHH	THH
HHT	HHT	THT
	HTH	TTH
	HTT	TTT

Each event is equally likely, so $P_{3}=1 / 8$.

Counting Arguments: Wait just one minute!

$\begin{array}{lll}n=2 & \text { HH } & \text { TH } \\ & \text { HT } & \text { TT }\end{array}$

Each event is equally likely, so $P_{2}=1 / 4$.

	HHH	THH
n $=3$	HHT	THT
	HTH	TTH
	HTT	TTT

Each event is equally likely, so $P_{3}=1 / 8$.

Non-Counting Arguments

Yes, neither HHH nor HHT can actually happen. So, the probability of seeing THH is really $1 / 6$. Right?

Non-Counting Arguments

Neither HHH nor HHT can actually happen. So, the probability of seeing THH is really $1 / 6$?

Well, not exactly. The probability of seeing THH is $1 / 6$ times the probability that the game didn't end in exactly two flips.

Non-Counting Arguments

Neither HHH nor HHT can actually happen. So, the probability of seeing THH is really $1 / 6$?

Well, not exactly. The probability of seeing THH is $1 / 6$ times the probability that the game didn't end in exactly two flips.

So, actually, the probability of seeing THH is:

$$
\frac{1}{6} \times \frac{6}{8}
$$

Non-Counting Arguments

Yes, neither HHH nor HHT can actually happen. So, the probability of seeing THH is really $1 / 6$.

Well, not exactly. The probability of seeing THH is $1 / 6$ times the probability that the game didn't end in exactly two flips.

So, actually, the probability of seeing THH is:

$$
\frac{1}{6} \times \frac{6}{8}=\frac{1}{8}
$$

This had to work out.

Non-Counting Arguments

Yes, neither HHH nor HHT can actually happen. So, the probability of seeing THH is really $1 / 6$.

Well, not exactly. The probability of seeing THH is $1 / 6$ times the probability that the game didn't end in exactly two flips.

So, actually, the probability of seeing THH is:

$$
\frac{1}{6} \times \frac{6}{8}=\frac{1}{8}
$$

This had to work out-because the coin doesn't know the rules of the game.

Counting Arguments

$$
\begin{array}{lll}
n=2 & \text { HH } & \text { TH } \\
& \text { HT } & \text { TT }
\end{array}
$$

Each event is equally likely, so $P_{2}=1 / 4$.

	HHH	THH
$n=3$	HHT	THT
	HTH	TTH
	HTT	TTT

Each event is equally likely, so $P_{3}=1 / 8$.

	HHHH	HTHH	THHH	TTHH
$n=4$	HHHT	HTHT	THHT	TTHT
	HHTH	HTTH	THTH	TTTH
	HHTT	HTTT	THTT	TTTT

Each event is equally likely, so $P_{4}=2 / 16$.

Counting Arguments

	HHHHH	HTHHH	THHHH	TTHHH
	HHHHT	HTHHT	THHHT	TTHHT
	HHHTH	HTHTH	THHTH	TTHTH
$\mathrm{n}=5$	HHHTT	HTHTT	THHTT	TTHTT
	HHTHH	HTTHH	THTHH	TTTHH
	HHTHT	HTTHT	THTHT	TTTHT
	HHTTH	HTTTH	THTTH	TTTTTH
	HHTTT	HTTTT	THTTT	TTTTTT

$$
\text { So, } P_{5}=3 / 32 .
$$

Counting Arguments

	HHHHH	HTHHH	THHHH	TTHHH
	HHHHT	HTHHT	THHHT	TTHHT
	HHHTH	HTHTH	THHTH	TTHTH
	HHHTT	HTHTT	THHTT	TTHTT
	HHTHH	HTTHH	THTHH	TTTHH
	HHTHT	HTTHT	THTHT	TTTHT
	HHTTH	HTTTH	THTTH	TTTTH
	HHTTT	HTTTT	THTTT	TTTTT

$$
\text { So, } P_{5}=3 / 32
$$

$\mathrm{n}=6 \quad$ HTHTHH, HTTTHH, THTTHH, TTHTHH, TTTTHH

$$
\text { So, } P_{6}=5 / 64
$$

Counting Arguments

	HHHHH	HTHHH	THHHH	TTHHH
	HHHHT	HTHHT	THHHT	TTHHT
	HHHTH	HTHTH	THHTH	TTHTH
	HHHTT	HTHTT	THHTT	TTHTT
	HHTHH	HTTHH	THTHH	TTTHH
	HHTHT	HTTHT	THTHT	TTTHT
	HHTTH	HTTTH	THTTH	TTTTH
	HHTTT	HTTTT	THTTT	TTTTT

$$
\text { So, } P_{5}=3 / 32
$$

$$
\mathrm{n}=6 \quad \text { HTHTHH, HTTTHH, THTTHH, TTHTHH, TTTTHH }
$$

$$
\text { So, } P_{6}=5 / 64
$$

$$
\mathrm{n}=7
$$

Counting Arguments

	HHHHH	HTHHH	THHHH	TTHHH
	HHHHT	HTHHT	THHHT	TTHHT
	HHHTH	HTHTH	THHTH	TTHTH
	HHHTT	HTHTT	THHTT	TTHTT
	HHTHH	HTTHH	THTHH	TTTHH
	HHTHT	HTTHT	THTHT	TTTHT
	HHTTH	HTTTH	THTTH	TTTTH
	HHTTT	HTTTT	THTTT	TTTTT

$$
\text { So, } P_{5}=3 / 32
$$

$\mathrm{n}=6 \quad$ HTHTHH, HTTTHH, THTTHH, TTHTHH, TTTTHH

$$
\text { So, } P_{6}=5 / 64
$$

$\mathrm{n}=7 \quad$ Homework

Search for Pattern

$$
\frac{1}{4}, \frac{1}{8}, \frac{2}{16}, \frac{3}{32}, \frac{5}{64}, \ldots
$$

Search for Pattern

$$
\frac{1}{4}, \frac{1}{8}, \frac{2}{16}, \frac{3}{32}, \frac{5}{64}, \ldots
$$

$$
P_{n}=\frac{x_{n}}{2^{n}},
$$

What's x_{n} ?

Search for Pattern

$$
\frac{1}{4}, \frac{1}{8}, \frac{2}{16}, \frac{3}{32}, \frac{5}{64}, \ldots
$$

$$
P_{n}=\frac{x_{n}}{2^{n}}, \quad \text { What's } x_{n} ?
$$

$$
x_{n}=1,1,2,3,5,8,13,21, \ldots
$$

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

The Rules for Rabbit Reproduction

1. Gestation period is one month.

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

The Rules for Rabbit Reproduction

1. Gestation period is one month.
2. Rabbits born in male/female pairs.

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

The Rules for Rabbit Reproduction

1. Gestation period is one month.
2. Rabbits born in male/female pairs.
3. Rabbits reach sexual maturity in one month.

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

The Rules for Rabbit Reproduction

1. Gestation period is one month.
2. Rabbits born in male/female pairs.
3. Rabbits reach sexual maturity in one month.
4. Rabbits are always pregnant. (And never die.)

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

The Rules for Rabbit Reproduction

1. Gestation period is one month.
2. Rabbits born in male/female pairs.
3. Rabbits reach sexual maturity in one month.
4. Rabbits are always pregnant. (And never die.)

Start with one newborn pair, how many pairs will you have n months later?

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

Month:	0	1	2	3	4	5
Mature Pairs	0					

Immature Pairs 1
Total Pairs 1

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

Month:	0	1	2	3	4	5
Mature Pairs	0	1				

Immature Pairs 1
Total Pairs

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

Month:	0	1	2	3	4	5
Mature Pairs	0	1				
Immature Pairs	1	0				
Total Pairs	1	1				

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

Month:	0	1	2	3	4	5
Mature Pairs	0	1	1			
Immature Pairs	1	0	1			
Total Pairs	1	1	2			

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

Month:	0	1	2	3	4	5
Mature Pairs	0	1	1	2		
Immature Pairs	1	0	1	1		
Total Pairs	1	1	2	3		

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

Month:	0	1	2	3	4	5
Mature Pairs	0	1	1	2	3	5
Immature Pairs	1	0	1	1	2	3
Total Pairs	1	1	2	3	5	8

An Unnecessary(?) Aside

The Fibonacci Numbers - 1202

Month:	0	1	2	3	4	5
Mature Pairs	0	1	1	2	3	5
Immature Pairs	1	0	1	1	2	3
Total Pairs	1	1	2	3	5	8

Thus, $F_{n+1}=F_{n}+F_{n-1}$.

An Answer

Theorem
The sequence x_{n} is the Fibonacci sequence.

Example

	T	HT
$\mathrm{n}=6$	T	HT

An Answer

Theorem
The sequence x_{n} is the Fibonacci sequence.

Example		
	THTTHH	HTHTHH
$\mathrm{n}=6$	TTHTHH	HTTTHH
	TTTTHH	

So, $x_{6} \leq x_{5}+x_{4}$.

An Answer

Theorem
The sequence x_{n} is the Fibonacci sequence.

Example

	THTTHH	HTHTHH
$\mathrm{n}=6$	TTHTHH	HTTTHH
	TTTTHH	

So, $x_{6} \leq x_{5}+x_{4}$.
*HTTHH **HTHH
Conversely *THTHH **TTHH
*TTTHH

An Answer

Theorem
The sequence x_{n} is the Fibonacci sequence.

Example

	THTTHH	HTHTHH
$n=6$	TTHTHH	HTTTHH
	TTTTHH	

So, $x_{6} \leq x_{5}+x_{4}$.

THTTHH HTHTHH
Conversely TTHTHH HTTTHH
TTTTHH
So, $x_{6} \geq x_{5}+x_{4}$.

More Questions

- What is the probability that the game ends after two or three flips?

More Questions

- What is the probability that the game ends after two or three flips?

$$
\frac{1}{4}+\frac{1}{8}=\frac{3}{8}
$$

More Questions

- What is the probability that the game ends after two or three flips?

$$
\frac{1}{4}+\frac{1}{8}=\frac{3}{8}
$$

- What is the probability that the game ends in four or fewer flips?

More Questions

- What is the probability that the game ends after two or three flips?

$$
\frac{1}{4}+\frac{1}{8}=\frac{3}{8}
$$

- What is the probability that the game ends in four or fewer flips?

$$
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}=\frac{1}{2}
$$

More Questions

- What is the probability that the game ends after two or three flips?

$$
\frac{1}{4}+\frac{1}{8}=\frac{3}{8}
$$

- What is the probability that the game ends in four or fewer flips?

$$
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}=\frac{1}{2}
$$

- What is the probability that the game ends in twenty or fewer flips?

More Questions

- What is the probability that the game ends after two or three flips?

$$
\frac{1}{4}+\frac{1}{8}=\frac{3}{8}
$$

- What is the probability that the game ends in four or fewer flips?

$$
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}=\frac{1}{2}
$$

- What is the probability that the game ends in twenty or fewer flips?

$$
\sum_{n=2}^{20} P_{n} \approx .983
$$

Original Question

What is the probability that the game ever ends?

Original Question

What is the probability that the game ever ends?

$$
\lim _{n \rightarrow \infty} \sum_{k=2}^{n} P_{n}=\sum_{k=0}^{\infty} \frac{F_{k}}{2^{k+2}}
$$

Original Question

What is the probability that the game ever ends?

$$
\lim _{n \rightarrow \infty} \sum_{k=2}^{n} P_{n}=\sum_{k=0}^{\infty} \frac{F_{k}}{2^{k+2}}
$$

Does this series converge?

Convergence

$$
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots=S
$$

Convergence

$$
\begin{aligned}
& \frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots=S \\
& \frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots=\frac{1}{2}
\end{aligned}
$$

Convergence

$$
\begin{array}{r}
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots= \\
\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots=\frac{1}{2} \\
\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots=\frac{1}{8}
\end{array}
$$

Convergence

$$
\begin{aligned}
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots & =S \\
\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{2} \\
\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{8} \\
\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{16}
\end{aligned}
$$

Convergence

$$
\begin{aligned}
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots & =S \\
\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{2} \\
\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{8} \\
\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{16} \\
\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{32} \\
\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{32}
\end{aligned}
$$

Convergence

$$
\begin{aligned}
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots & =S \\
\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{2} \\
\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{8} \\
\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{16} \\
\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{32} \\
\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{32} \\
\frac{1}{128}+\ldots & =\frac{1}{64}
\end{aligned}
$$

Convergence

$$
\begin{aligned}
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots & =S \\
\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{2} \\
\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{8} \\
\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{16} \\
\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{32} \\
\frac{1}{64}+\frac{1}{128}+\ldots & =\frac{1}{32} \\
\frac{1}{128}+\ldots & =\frac{1}{64}
\end{aligned}
$$

So, $S=\frac{1}{2}+\frac{1}{8}+\frac{1}{16}+\frac{2}{32}+\frac{3}{64}+\ldots$.

The Sum

Recall,

$$
S=\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots
$$

The Sum

Recall,

$$
S=\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots
$$

We just decided,

$$
S=\frac{1}{2}+\frac{1}{8}+\frac{1}{16}+\frac{2}{32}+\frac{3}{64}+\frac{5}{128}+\ldots
$$

The Sum

Recall,

$$
S=\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots
$$

We just decided,

$$
S=\frac{1}{2}+\frac{1}{8}+\frac{1}{16}+\frac{2}{32}+\frac{3}{64}+\frac{5}{128}+\ldots
$$

So,

$$
\begin{gathered}
S=\frac{1}{2}+\frac{1}{2}\left(\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\ldots\right. \\
S=\frac{1}{2}+\frac{1}{2} S
\end{gathered}
$$

The Sum

Recall,

$$
S=\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\frac{8}{128}+\ldots
$$

We just decided,

$$
S=\frac{1}{2}+\frac{1}{8}+\frac{1}{16}+\frac{2}{32}+\frac{3}{64}+\frac{5}{128}+\ldots
$$

So,

$$
\begin{gathered}
S=\frac{1}{2}+\frac{1}{2}\left(\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\ldots\right. \\
S=\frac{1}{2}+\frac{1}{2} S \\
S=1
\end{gathered}
$$

The Sum

$$
\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\ldots=1
$$

$$
\sum_{n=2}^{\infty} \frac{F_{n-2}}{2^{n}}=1
$$

The Sum

$$
\sum_{n=2}^{\infty} \frac{F_{n-2}}{2^{n}}=1
$$

The Sum

$$
\sum_{n=2}^{\infty} \frac{F_{n-2}}{2^{n}}=1!!!
$$

The Miracle

The Miracle

$$
\sum_{n=2}^{\infty} \frac{F_{n-2}}{2^{n}}=1!!!
$$

THIS IS A MIRACLE!!!

The Miracle

Definition
A miracle is the simultaneous occurrence of two or more zero-probability events.

The Miracle

Definition

A miracle is the simultaneous occurrence of two or more zero-probability events.

- The series converged.

The Miracle

Definition

A miracle is the simultaneous occurrence of two or more zero-probability events.

- The series converged. (And I could prove it!)

The Miracle

Definition

A miracle is the simultaneous occurrence of two or more zero-probability events.

- The series converged. (And I could prove it!)
- We could find the value to which it converged.

The Miracle

Definition

A miracle is the simultaneous occurrence of two or more zero-probability events.

- The series converged. (And I could prove it!)
- We could find the value to which it converged.
- That value was rational.

The Miracle

Definition

A miracle is the simultaneous occurrence of two or more zero-probability events.

- The series converged. (And I could prove it!)
- We could find the value to which it converged.
- That value was rational.
- That value was the simplest possible rational.

The Miracle

"I think you should be more explicit here in step two."

The Very Good Reason

$$
g(x)=\sum_{k=0}^{\infty} F_{k} x^{k}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots
$$

The Very Good Reason

$$
\begin{gathered}
g(x)=\sum_{k=0}^{\infty} F_{k} x^{k}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots \\
x g(x)=\sum_{k=0}^{\infty} F_{k} x^{k+1}=r+x^{2}+2 x^{3}+3 x^{4}+\ldots
\end{gathered}
$$

The Very Good Reason

$$
\begin{array}{rrr}
g(x)=\sum_{k=0}^{\infty} F_{k} x^{k} & = & 1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots \\
x g(x)=\sum_{k=0}^{\infty} F_{k} x^{k+1} & = & x+x^{2}+2 x^{3}+3 x^{4}+\ldots \\
x^{2} g(x)=\sum_{k=0}^{\infty} F_{k} x^{k+2} & = & x^{2}+x^{3}+2 x^{4}+\ldots
\end{array}
$$

The Very Good Reason

$$
\begin{array}{rrr}
g(x)=\sum_{k=0}^{\infty} F_{k} x^{k} & = & 1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots \\
x g(x)=\sum_{k=0}^{\infty} F_{k} x^{k+1} & = & x+x^{2}+2 x^{3}+3 x^{4}+\ldots \\
x^{2} g(x)=\sum_{k=0}^{\infty} F_{k} x^{k+2} & = & x^{2}+x^{3}+2 x^{4}+\ldots
\end{array}
$$

So,

$$
g(x)-x g(x)-x^{2} g(x)=1
$$

The Very Good Reason

$$
\begin{array}{rrr}
g(x)=\sum_{k=0}^{\infty} F_{k} x^{k} & = & 1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots \\
x g(x)=\sum_{k=0}^{\infty} F_{k} x^{k+1} & = & x+x^{2}+2 x^{3}+3 x^{4}+\ldots \\
x^{2} g(x)=\sum_{k=0}^{\infty} F_{k} x^{k+2} & = & x^{2}+x^{3}+2 x^{4}+\ldots
\end{array}
$$

So,

$$
\begin{gathered}
g(x)-x g(x)-x^{2} g(x)=1 \\
g(x)=\frac{1}{1-x-x^{2}}
\end{gathered}
$$

The Very Good Reason

$$
g(x)=\frac{1}{1-x-x^{2}}
$$

The Very Good Reason

$$
\begin{gathered}
g(x)=\frac{1}{1-x-x^{2}} \\
g(x)=\sum_{k=0}^{\infty} F_{k} x^{k}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots
\end{gathered}
$$

The Very Good Reason

$$
\begin{gathered}
g(x)=\frac{1}{1-x-x^{2}} \\
g(x)=\sum_{k=0}^{\infty} F_{k} x^{k}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots \\
g\left(\frac{1}{2}\right)=\sum_{k=0}^{\infty} F_{k}\left(\frac{1}{2}\right)^{k}=1+\frac{1}{2}+2\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)^{3}+5\left(\frac{1}{2}\right)^{4}+\ldots
\end{gathered}
$$

The Very Good Reason

$$
\begin{gathered}
g(x)=\frac{1}{1-x-x^{2}} \\
g(x)=\sum_{k=0}^{\infty} F_{k} x^{k}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots \\
g\left(\frac{1}{2}\right)=\sum_{k=0}^{\infty} F_{k}\left(\frac{1}{2}\right)^{k}=1+\frac{1}{2}+2\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)^{3}+5\left(\frac{1}{2}\right)^{4}+\ldots \\
=1+\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{5}{16}+\ldots
\end{gathered}
$$

The Very Good Reason

$$
\begin{gathered}
g(x)=\frac{1}{1-x-x^{2}} \\
g(x)=\sum_{k=0}^{\infty} F_{k} x^{k}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots \\
g\left(\frac{1}{2}\right)=\sum_{k=0}^{\infty} F_{k}\left(\frac{1}{2}\right)^{k}=1+\frac{1}{2}+2\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)^{3}+5\left(\frac{1}{2}\right)^{4}+\ldots \\
\\
=1+\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{5}{16}+\ldots \\
\\
=4\left(\frac{1}{4}+\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{5}{64}+\ldots\right.
\end{gathered}
$$

Technicalities

$$
\sum_{k=0}^{\infty} F_{k} x^{k}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots
$$

Technicalities

$$
\sum_{k=0}^{\infty} F_{k} x^{k}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots
$$

This is the Taylor series about 0 for $\frac{1}{1-x-x^{2}}$.
The interval of convergence is $\left(\frac{-1}{\lambda}, \frac{1}{\lambda}\right)$, where $\lambda=\frac{1+\sqrt{5}}{2}$, i.e. the golden mean.

Technicalities

$$
\sum_{k=0}^{\infty} F_{k} x^{k}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+\ldots
$$

This is the Taylor series about 0 for $\frac{1}{1-x-x^{2}}$.
The interval of convergence is $\left(\frac{-1}{\lambda}, \frac{1}{\lambda}\right)$, where $\lambda=\frac{1+\sqrt{5}}{2}$, i.e. the golden mean.
(NB The radius of convergence, $\frac{1}{\lambda}$, is approximately .618 , so $\frac{1}{2}$ is comfortably inside.)

Two Great Tastes That Taste Great Together

The function, $g(x)=\frac{1}{1-x-x^{2}}$, is called the generating function for the Fibonacci numbers.

Turning the Page

Rewrite $g(x)$ using partial fractions:

$$
\frac{1}{1-x-x^{2}}=\frac{A}{1-\lambda x}+\frac{B}{1+(\lambda-1) x}
$$

Turning the Page

Rewrite $g(x)$ using partial fractions:

$$
\frac{1}{1-x-x^{2}}=\frac{A}{1-\lambda x}+\frac{B}{1+(\lambda-1) x}
$$

Solve for A and B :

$$
A=\frac{\lambda}{\sqrt{5}} \quad B=\frac{\lambda-1}{\sqrt{5}}
$$

Turning the Page

Rewrite $g(x)$ using partial fractions:

$$
\frac{1}{1-x-x^{2}}=\frac{A}{1-\lambda x}+\frac{B}{1+(\lambda-1) x}
$$

Solve for A and B :

$$
A=\frac{\lambda}{\sqrt{5}} \quad B=\frac{\lambda-1}{\sqrt{5}}
$$

By the known formula for geometric series:

$$
\frac{A}{1-\lambda x}=\sum_{k=0}^{\infty} A(\lambda x)^{k}
$$

Turning the Page

Rewrite $g(x)$ using partial fractions:

$$
\frac{1}{1-x-x^{2}}=\frac{A}{1-\lambda x}+\frac{B}{1+(\lambda-1) x}
$$

Solve for A and B :

$$
A=\frac{\lambda}{\sqrt{5}} \quad B=\frac{\lambda-1}{\sqrt{5}}
$$

By the known formula for geometric series:

$$
\frac{A}{1-\lambda x}=\sum_{k=0}^{\infty} A(\lambda x)^{k}
$$

Similarly,

$$
\frac{B}{1+(\lambda-1) x}=\sum_{k=0}^{\infty} B(-1)^{k}((\lambda-1) x)^{k}
$$

Never in a Million Years

$$
\frac{1}{1-x-x^{2}}=\sum_{k=0}^{\infty} A(\lambda x)^{k}+\sum_{k=0}^{\infty} B(-1)^{k}((\lambda-1) x)^{k}
$$

Never in a Million Years

$$
\frac{1}{1-x-x^{2}}=\sum_{k=0}^{\infty} A(\lambda x)^{k}+\sum_{k=0}^{\infty} B(-1)^{k}((\lambda-1) x)^{k}
$$

Recalling the values of A and B,

$$
\sum_{k=0}^{\infty} F_{k} x^{k}=\sum_{k=0}^{\infty}\left[\frac{\lambda^{k+1}}{\sqrt{5}}+\frac{(-1)^{k}(\lambda-1)^{k+1}}{\sqrt{5}}\right] x^{k}
$$

Never in a Million Years

$$
\frac{1}{1-x-x^{2}}=\sum_{k=0}^{\infty} A(\lambda x)^{k}+\sum_{k=0}^{\infty} B(-1)^{k}((\lambda-1) x)^{k}
$$

Recalling the values of A and B,

$$
\sum_{k=0}^{\infty} F_{k} x^{k}=\sum_{k=0}^{\infty}\left[\frac{\lambda^{k+1}}{\sqrt{5}}+\frac{(-1)^{k}(\lambda-1)^{k+1}}{\sqrt{5}}\right] x^{k}
$$

Power series expansions are unique! So,

$$
F_{k}=\frac{\lambda^{k+1}}{\sqrt{5}}+\frac{(-1)^{k}(\lambda-1)^{k+1}}{\sqrt{5}}
$$

Be wise, generalize!

$\left.\begin{array}{llc}\text { Heads } & \begin{array}{l}\text { Numerators } \\ \text { and Recursion }\end{array} & \begin{array}{c}\text { Generating } \\ \text { Function }\end{array} \\ \hline \text { One } & 1,1,1,1, \ldots & \frac{1}{1-x} \\ \text { Two } & a_{n}=a_{n-1} & 1,1,2,3, \ldots\end{array}\right] \frac{1}{1-x-x^{2}}$.

And so on ...

"Suppose you had a three-sided coin?"

Heads Numerators
 and Recursion

One
$1,2,4,8, \ldots$

$$
a_{n}=2 a_{n-1}
$$

Two $\quad 1,2,6,16,48, \ldots$

$$
a_{n}=2\left(a_{n-1}+a_{n-2}\right)
$$

Three $1,2,6,18,52,152, \ldots$
$a_{n}=2\left(a_{n-1}+a_{n-2}+a_{n-3}\right)$
Four $1,2,6,18,54,160, \ldots$

$$
a_{n}=2\left(a_{n-1}+a_{n-2}+a_{n-3}+a_{n-4}\right)
$$

Generating

Function

$$
\frac{1}{1-2 x}
$$

$$
\frac{1}{1-2 x-2 x^{2}}
$$

$$
\frac{1}{1-2 x-2 x^{2}-2 x^{3}}
$$

$$
\frac{1}{1-2 x-2 x^{2}-2 x^{3}-2 x^{4}}
$$

Homework: Do the n consecutive heads from an m-sided coin problem.

Fibonacci Fractions

Do the long division problem:

$$
\frac{10,000}{9,899}=
$$

Fibonacci Fractions

Do the long division problem:

$$
\frac{10,000}{9,899}=1.010203050813213455 \ldots
$$

Fibonacci Fractions

Do the long division problem:

$$
\frac{10,000}{9,899}=1.010203050813213455 \ldots
$$

What just happened?

$$
\begin{aligned}
g\left(\frac{1}{100}\right) & =1+\frac{1}{100}+\frac{2}{(100)^{2}}+\frac{3}{(100)^{3}}+\ldots \\
& =1+.01+.0002+.000003+\ldots
\end{aligned}
$$

Fibonacci Fractions

Do the long division problem:

$$
\frac{10,000}{9,899}=1.010203050813213455 \ldots
$$

What just happened?

$$
\begin{aligned}
g\left(\frac{1}{100}\right)= & 1+\frac{1}{100}+\frac{2}{(100)^{2}}+\frac{3}{(100)^{3}}+\ldots \\
& =1+.01+.0002+.000003+\ldots \\
& g\left(\frac{1}{1000}\right)=\frac{1,000,000}{998,999}
\end{aligned}
$$

Multiplying Weirdness

Recall

$$
F_{k}=\frac{1}{\sqrt{5}}\left[\lambda^{k+1}+(-1)^{k}(\lambda-1)^{k+1}\right]
$$

Multiplying Weirdness

Recall

$$
F_{k}=\frac{1}{\sqrt{5}}\left[\lambda^{k+1}+(-1)^{k}(\lambda-1)^{k+1}\right]
$$

Here's a picture of those fractional parts:

Pictured is the fractional part of $\frac{1}{\sqrt{5}} \lambda^{k}, k=1,2, \ldots, 15$.

Your Real Homework

The picture for the fractional part of 1.5^{n} for $n=10 \ldots 80$. (This is what we expect to see.)

Your Real Homework

Conjecture

There are not very many real numbers, γ, that have the property that there exists a constant C so that the sequence consisting of the fractional parts of $C \gamma^{n}, n=1,2, \ldots$ has only finitely many limit points.

Your Real Homework

Conjecture

There are not very many real numbers, γ, that have the property that there exists a constant C so that the sequence consisting of the fractional parts of $C \gamma^{n}, n=1,2, \ldots$ has only finitely many limit points.

Not very many $=$ measure zero
$=$ first category
$=$ nowhere dense

Your Real Homework: Hints

The number $1+\sqrt{2}=p$ is even better than the golden mean.

$$
\begin{aligned}
& p^{1} \approx 2.41421 \\
& p^{2} \approx 5.82842 \\
& p^{3} \approx 14.07106 \\
& \cdots \\
& p^{8} \approx 1153.99913 \\
& p^{9} \approx 2786.00035 \\
& p^{10} \approx 6725.99985
\end{aligned}
$$

Your Real Homework: Hints

$$
\begin{aligned}
& p^{1}=1+\sqrt{2} \\
& p^{2}=3+2 \sqrt{2} \\
& p^{3}=7+5 \sqrt{2} \\
& \ldots \\
& p^{8}=577+408 \sqrt{2} \\
& p^{9}=1393+985 \sqrt{2} \\
& p^{10}=3363+2378 \sqrt{2}
\end{aligned}
$$

A Final Word

Thanks to the local organizers: Adam Coffman, Rob Merkovsky and Marc Lipman.

A Final Word

Thanks to the local organizers: Adam Coffman, Rob Merkovsky and Marc Lipman.

Thanks to IUPU-Fort Waye.

A Final Word

Thanks to the local organizers: Adam Coffman, Rob Merkovsky and Marc Lipman.

Thanks to IUPU-Fort Waye.
Thank you for your kind attention.

