Critical Orbits in Dynamics

Rafe Jones

College of the Holy Cross

November 1, 2010
Let K be a field and $f(x) \in K[x]$. Define f^n to be the nth iterate of f:

$$f^n := f \circ f \circ \cdots \circ f.$$

Orbit of $\alpha \in K$ under f:

$$O_f(\alpha) := \{ f^n(\alpha) : n = 1, 2, \ldots \}$$

Goal of dynamics: understand the orbits of f.

Rafe Jones Critical Orbits in Dynamics
Let \(f \in \mathbb{C}[z] \).

Typical goal is to understand topological properties of orbits of \(f \).

“The forward orbits of the critical points of a rational map determine the general features of the global dynamics of the map.”
Definition

We say that f is chaotic at $z \in \mathbb{C}$ if it exhibits sensitive dependence on initial conditions near z: there exists $\epsilon > 0$ such that in all neighborhoods U of z there exists $y \in U$ with

$$|f^n(z) - f^n(y)| > \epsilon.$$

for some $n \geq 1$.

The Julia set $J(f)$ is the set where f behaves chaotically.
Theorem

Let \(f \in \mathbb{C}[z] \) be quadratic, with critical point \(\gamma \). Then \(J(f) \) is a Cantor set if the critical orbit \(O_f(\gamma) \) is unbounded, and \(J(f) \) is connected if \(O_f(\gamma) \) is bounded.

We say \(f \) is conjugate to \(g \) if \(f = m \circ g \circ m^{-1} \) for some complex Mobius transformation \(m = (az + b)/(cz + d) \), \(ad - bc \neq 0 \).

Conjugate maps have essentially the same dynamics, at least topologically. In particular, \(J(f) = mJ(g) \).

Any quadratic \(f \in \mathbb{C}[z] \) is conjugate to \(f_c = z^2 + c \), and \(\{ c : O_{f_c} \text{ is bounded} \} \subset \mathbb{C} \) is called the Mandelbrot set.
The Mandelbrot set
Conjecture (open): the hyperbolic components make up the full interior of the Mandelbrot set.
Any quadratic $f \in \mathbb{R}[x]$ is conjugate (over \mathbb{R}) to $f_c := x^2 + c$, $c \in \mathbb{R}$.

If $-2 \leq c \leq 1/4$ (i.e. if c belongs to the Mandelbrot set), then f_c maps $[-\beta, \beta]$ to itself, where

$$\beta = \frac{-1 - \sqrt{1 - 4c}}{2}.$$

Alternately, each such f_c is conjugate to $\mu x(1 - x)$ for $1 \leq \mu \leq 4$, and the invariant interval is $[0, 1]$.
Theorem

Suppose that \(f_c \) exhibits exponential expansion along the critical orbit: \(|(f^n_c)'(f_c(0))|\) grows exponentially with \(n \). Then \(f_c \) is chaotic at almost every \(x \in [-\beta, \beta] \).

Note: \(|(f^n_c)'(f_c(0))| = \left| \prod_{i=1}^{n} f'_c(f^i_c(0)) \right|\).

Theorem (Avila-Moreira 2005)

For almost every \(c \in [-2, 1/4] \), either the hypotheses of the previous theorem are satisfied or \(f_c \) is hyperbolic on \([0, 1]\).
Let $f(x) \in \mathbb{Z}[x]$ be monic and quadratic, with critical point γ.

Question: when is $f^n(x)$ irreducible over \mathbb{Q}?

Not always: if $f(x) = x^2 + 10x + 17$, then f is irreducible but f^2 factors as the product of two quadratics. $f^2(-5) = 1$.

If $f(x) = x^2 - x - 1$, then f and f^2 are both irreducible, but f^3 factors as the product of two quartics. $f^3(1/2) = 121/256$.

Theorem

f^n is irreducible if none of $-f(\gamma), f^2(\gamma), f^3(\gamma), \ldots, f^n(\gamma)$ is a square in \mathbb{Q}.
Proof: Write $f(x) = (x - \gamma)^2 + \gamma + m$, with $\gamma \in \frac{1}{2}\mathbb{Z}$, $m \in \frac{1}{4}\mathbb{Z}$.

For $n = 1$, f is irreducible if and only if $-f(\gamma)$ is a square in \mathbb{Q}.

Let $n \geq 2$ and suppose that none of $-f(\gamma), f^2(\gamma), f^3(\gamma), \ldots, f^n(\gamma)$ is a square in \mathbb{Q}.

By induction, we may assume f^{n-1} is irreducible.
Let β be a root of f^n, and note that $\alpha := f(\beta)$ is a root of f^{n-1}.

Thus $\mathbb{Q}(\beta) \supseteq \mathbb{Q}(\alpha)$.

Now

$$[\mathbb{Q}(\beta) : \mathbb{Q}] = [\mathbb{Q}(\beta) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = 2^{n-1}[\mathbb{Q}(\beta) : \mathbb{Q}(\alpha)],$$

where the last equality follows since f^{n-1} is irreducible.

Thus f^n irreducible iff $[\mathbb{Q}(\beta) : \mathbb{Q}(\alpha)] = 2$, i.e., if and only if $f(x) - \alpha$ is irreducible over $\mathbb{Q}(\alpha)$.
$f(x) - \alpha$ is irreducible over $\mathbb{Q}(\alpha)$ if and only if $-(\gamma + m - \alpha)$ is a square in $\mathbb{Q}(\alpha)$.

The Galois conjugates of $x \in \mathbb{Q}(\alpha)$ consist of the orbit of x under the action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

$N_{\mathbb{Q}(\alpha)/\mathbb{Q}} : \mathbb{Q}(\alpha) \to \mathbb{Q}$ is a multiplicative homomorphism mapping each element to the product of its Galois conjugates.

For $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, $\sigma(-(\gamma + m - \alpha)) = -(\gamma + m - \sigma(\alpha))$

$$N_{\mathbb{Q}(\alpha)/\mathbb{Q}}(-(\gamma + m - \alpha)) = \prod_{\beta \text{ Gal. conj. of } \alpha} -(\gamma + m - \beta)).$$
\[N_{\mathbb{Q}(\alpha)/\mathbb{Q}}(-(\gamma + m - \alpha)) = \prod_{f^{n-1}(\alpha)=0} -(\gamma + m - \alpha) \]

\[= (-1)^{2^{n-1}} \prod_{f^{n-1}(\alpha)=0} (\gamma + m) - \alpha \]

\[= (-1)^{2^{n-1}} f^{n-1}(\gamma + m) \]

\[= f^{n-1}(f(\gamma)) \]

\[= f^n(\gamma) \]

But the norm homomorphism maps squares to squares, and \(f^n(\gamma) \) is not a square in \(\mathbb{Q} \). QED
Remarks:

▶ Proof can be adapted to hold over any field of characteristic $\neq 2$.
▶ Hypotheses of theorem are not necessary, e.g. $f(x) = (x - 1)^2 + 1$.
▶ When \mathbb{Q} is replaced by a finite field, the result becomes if and only if.
▶ Conjugation does not preserve irreducibility, e.g. x^2 and $(x - 2)^2 + 2$.
Example: \(f_c(x) = x^2 + c, \ c \in \mathbb{Z}, -c \) not a square.
\(f_c^n(0) \) is an increasing sequence of positive integers.

For \(y \in \mathbb{Z}, \ y^2 + c \) cannot be a square if \(|c| < 2|y| - 1 \), i.e. if \(|y| > (|c| + 1)/2 \).

But \(|f_c(0)| = |c| > (|c| + 1)/2 \) provided \(|c| > 1 \).

For \(c = 1 \) we have \(|f_c^2(0)| > (|c| + 1)/2 \).
Another arithmetic application of the critical orbit

For $\alpha \in \mathbb{Z}$, let

$$P(O_f(\alpha)) := \{p \text{ prime} : p \mid f^n(\alpha) \text{ for at least one } n \geq 1\}.$$

Example: $f = x^2 + 1$, $\alpha = 3$, $O_f(\alpha)) = \{10, 101, 10202, \ldots\}$.

$\{2, 5, 101, 5101\} \subset P(O_f(\alpha))$.

27 out of the 1229 primes $\leq 10,000$ belong to $P(O_f(\alpha))$.

For S a set of primes, define its natural upper density $D^+(S)$ to be:

$$D^+(S) := \limsup_{x \to \infty} \frac{\#\{p \leq x : p \in S\}}{\#\{p \leq x\}}$$
Theorem (RJ)

Let f have critical point γ, and let v_p be the p-adic valuation. Suppose that f^n is irreducible for all $n \geq 1$. Furthermore suppose that for infinitely many $n \geq 1$ the following holds:

$$\exists p \neq 2 \text{ with } v_p(f^n(\gamma)) \text{ odd and } v_p(f^m((\gamma))) = 0 \text{ for all } m < n.$$

Then $D^+(P(O_f(\alpha))) = 0$ for all $\alpha \in \mathbb{Z}$.

Loosely, this says that elements of orbits of f do not have many small prime factors.

The proof involves counting elements in $Gal(f^n/\mathbb{Q})$ that fix at least one root of f^n, for $n \to \infty$. Uses probability theory (martingales), and facts about permutation groups.
Example: $f = x^2 + 3$. $\gamma = 0$.

\[
\begin{align*}
f(0) &= 3 \\
f^2(0) &= 2^2 \cdot 3 \\
f^3(0) &= 3 \cdot 7^2 \\
f^4(0) &= 2^2 \cdot 3 \cdot 1801 \\
f^5(0) &= 3 \cdot 13 \cdot 3019 \cdot 3967 \\
f^6(0) &= 2^2 \cdot 3 \cdot 7^2 \cdot 40867 \cdot 9078827347 \\
f^7(0) &= 3 \cdot 79 \cdot 200822022266672286333740239816831
\end{align*}
\]
The family $x^2 + c$, revisited

For $f(x) = x^2 + c$, $c \in \mathbb{Z} \setminus \{0, -1, -2\}$, the critical orbit has a property called *rigid divisibility*:

Let $\beta_n = f^n(0)$. Then for all $m \geq 1$,

1. $\beta_n | \beta_{nm}$ and

2. $v_p(\beta_n) = e > 0 \Rightarrow v_p(\beta_{nm}) = e$.

This property arises because of the lack of a linear term in f.
Example: $f = x^2 + 3$.

\begin{align*}
\beta_1 &= 3 \\
\beta_2 &= 2^2 \cdot 3 \\
\beta_3 &= 3 \cdot 7^2 \\
\beta_4 &= 2^2 \cdot 3 \cdot 1801 \\
\beta_5 &= 3 \cdot 13 \cdot 3019 \cdot 3967 \\
\beta_6 &= 2^2 \cdot 3 \cdot 7^2 \cdot 40867 \cdot 9078827347 \\
\beta_7 &= 3 \cdot 79 \cdot 200822022266672286333740239816831
\end{align*}

Note: when ℓ is prime, β_ℓ is divisible by β_1, and β_ℓ/β_1 is relatively prime to all β_m for $m < \ell$.
Theorem

Let $f = x^2 + c$, where $c \in \mathbb{Z} \setminus \{0, -1, -2\}$ and $-c$ not a square. Then for any $\alpha \in \mathbb{Z}$,

$$D^+(P(O_f(\alpha))) = 0.$$

Remark: The theorem can be extended to cover all $x^2 + c$ except for $c = -1$.
Proof: Since $-c$ is not a square, f^n is irreducible for all n.

By the previous theorem, it thus suffices to show that for infinitely many ℓ, β_ℓ/β_1 is not a square.

If $\beta_\ell/\beta_1 = y_0^2$ for $\ell \geq 3$, the curve

$$C : \beta_1 y^2 = f^3(x)$$

has the integral point $(\beta_{\ell-3}, y_0)$. Since f^3 has degree 8 and no repeated roots, C has genus 3, and thus by Siegel’s Theorem only finitely many integral points.
Further Directions

Conjecture

Suppose that \(f = x^2 + ax + b \in \mathbb{Z}[x] \) with critical point \(\gamma \), and suppose that \(O_f(\gamma) \) is infinite and \(f^n \) is irreducible for all \(n \). Then for any \(\alpha \in \mathbb{Z} \),

\[
D^+(P(O_f(\alpha))) = 0.
\]

Bad example: \(f(x) = (x + 945)^2 - 945 + 3 \).
\[
\beta_1 = 2 \cdot 3 \cdot 157 \\
\beta_2 = 3 \cdot 311 \\
\beta_3 = 2 \cdot 3 \cdot 7 \cdot 19 \\
\beta_4 = 3 \cdot 83^2 \\
\beta_5 = 2 \cdot 3 \cdot 103 \cdot 755789
\]