An arithmetic dynamical Mordell-Lang conjecture

Rafe Jones

Carleton college

August 15, 2015

Silvermania!
Warmup: squares in polynomial orbits

For a field K, $f \in K(x)$, and $\alpha \in K$, the orbit $O_f(\alpha)$ is $\{f^n(\alpha) : n \geq 0\}$.
Let \(f \in \mathbb{Q}[x] \) be monic and quadratic, and let \(S \) be the set of rational squares. Suppose there is \(\alpha \in \mathbb{Q} \) such that \(O_f(\alpha) \cap S \) is infinite. What can be said about \(f \)?

Motivation:

- If \(f \in \mathbb{Q}(x) \) has degree at least two and there is \(\alpha \in \mathbb{Q} \) with \(O_f(\alpha) \cap \mathbb{Z} \) infinite, then \(f^2(x) \in \mathbb{Q}[x] \) (Silverman 1993)

- If \(f, g \in \mathbb{C}[x] \) have degree at least two and there are \(\alpha, \beta \in \mathbb{C} \) with \(O_f(\alpha) \cap O_g(\beta) \) infinite, then \(f \) and \(g \) have a common iterate (Ghioca-Tucker-Zieve 2008)
Theorem (Cahn-RJ-Spear 2015)

If \(f \in \mathbb{Q}[x] \) is monic and quadratic and \(O_f(\alpha) \cap S \) is infinite for some \(\alpha \in \mathbb{Q} \), then either

- \(f(x) = (x + c)^2 \) for some \(c \in \mathbb{Q} \), or
- \(f(x) = x^2 + 4x \).

Remarks (let \(f(x) = x^2 + 4x \)):

- \(O_f(1/2) = \{1/2, (3/2)^2, (15/4)^2, (255/16)^2, \ldots \} \)
- \(f^2(x) = (x^2 + 4x)(x + 2)^2 \)
- \(f(x) = T_2(x + 2) - 2 \), where \(T_2(x) = x^2 - 2 \). Critical orbit of \(f(x) \) is \(-2 \mapsto -4 \mapsto 0 \mapsto 0\).
- For any monic, quadratic \(f \in \mathbb{Q}[x] \) and any \(\alpha \in \mathbb{Q} \), \(\{n : f^n(\alpha) \in S\} \) is a finite union of arithmetic progressions.
Conjecture (Dynamical Mordell-Lang)

Let X/\mathbb{C} be a quasi-projective variety, $V \subseteq X$ a subvariety, and $f : X \to X$ a morphism. Then for all $\alpha \in X(\mathbb{C})$, the set
\{$n : f^n(\alpha) \in V(\mathbb{C})$\} is a finite union of arithmetic progressions.

Singletons are considered arithmetic progressions. So if
\{$n : f^n(\alpha) \in V(\mathbb{C})$\} is finite, then the conjecture holds.
Theorem (Skolem-Mahler-Lech)

If \(F(x_0, \ldots, x_{\ell-1}) = \sum_{i=0}^{\ell-1} a_i x_i \) is a linear form on \(\mathbb{C}^\ell \) and \(a_{n+\ell} = F(a_n, \ldots, a_{n+\ell-1}) \) for all \(n \geq 0 \), then \(\{ n : a_n = 0 \} \) is a finite union of arithmetic progressions.

Special case of dynamical M-L conjecture: \(f : \mathbb{A}^\ell \to \mathbb{A}^\ell \),

\(f(x_0, \ldots, x_{\ell-1}) = (x_1, \ldots, x_{\ell-1}, F(x_0, \ldots, x_{\ell-1})) \), \(V = \{ x_0 = 0 \} \).
The dynamical M-L conjecture is known to hold for

- $X = \mathbb{A}^n$ and f an automorphism of X (Bell 2006)
- X a semi-abelian variety (Ghioca-Tucker 2009)
- X arbitrary and f étale (Bell-Ghioca-Tucker 2010)
- $X = \mathbb{A}^2$ (Xie 2015)
- $X = \mathbb{A}^n$, V is a curve, and $f = (f_1, \ldots, f_n)$ with $f_i \in \mathbb{C}[x]$ (Xie 2015)
From now on, K is a number field.

A K-endomorphism of a variety X is a morphism $X \to X$ defined over K.

Question: Let X/K be a quasi-projective variety, $V \subset X(K)$ the value set $\lambda(X(K))$ of a K-endomorphism λ of X, and f a K-endomorphism of X. For $\alpha \in X(K)$, must $\{n : f^n(\alpha) \in V\}$ be a finite union of arithmetic progressions?
Proposition

Let G be a finitely generated abelian group, $H \leq G$, and $f : G \to G$ a homomorphism. Then for any $\alpha \in G$,
\[\{ n : f^n(\alpha) \in H \} \] is a finite union of arithmetic progressions.

Consequence: if X is an abelian variety, f and λ are isogenies on X, and $\alpha \in X(K)$, then
\[\{ n : f^n(\alpha) \in \lambda(X(K)) \} \] is a finite union of arithmetic progressions.
Bad example: \(K = \mathbb{Q}, X = \mathbb{A}^1, \lambda(y) = y^2, V = \{ \text{squares in } \mathbb{Q} \}, f(x) = x + 1, \alpha = 0. \)

Then \(f^n(0) = n \) for all \(n \geq 0 \), so

\[
\{ n : f^n(0) \in V \} = \{ 0, 1, 4, 9, \ldots \}.
\]
Revised Question: Let X/K be a quasi-projective variety, λ a K-endomorphism of X, $V = \lambda(X(K))$, and f a sufficiently complicated K-endomorphism of X. For $\alpha \in X(K)$, must $\{n : f^n(\alpha) \in V\}$ be a finite union of arithmetic progressions?

Suppose there is i with $f^i = \lambda \circ g$, where g is a K-endomorphism of X.
Then for $n \geq i$, we have $f^n(\alpha) = \lambda(g(f^{n-i}(\alpha))) \in \lambda(X(K))$.

So if an iterate of f has a “close functional relationship” to λ, we should expect the question to have an affirmative answer.
For $n \geq 1$, let Z_n be the subvariety of $X \times X$ given by $f^n(x) = \lambda(y)$.

Then there is a natural K-morphism $f : Z_{n+1} \to Z_n$ taking (x, y) to $(f(x), y)$. Thus if $i > j$, a point in $Z_i(K)$ maps to a point in $Z_j(K)$.

Suppose that $\{n : f^n(\alpha) \in \lambda(X(K))\}$ is infinite.

Then $Z_n(K)$ is infinite for all $n \geq 1$.

First leap of faith: For each n, the infinitely many points in $Z_n(K)$ are Zariski dense in Z_n.

Second leap of faith: The Bombieri-Lang conjecture is true: if a variety has a Zariski-dense set of K-rational points, then it is not of general type (i.e. not of full Kodaira dimension). Therefore Z_n is not of general type for any n.

Third leap of faith: Because f is sufficiently complicated, the varieties Z_n will be of general type for large n unless some iterate of f has a “close functional relationship” to λ.
Conjecture (Arithmetic dynamical Mordell-Lang conjecture)

Let $X = (\mathbb{P}^1)^g$ and let $f = (f_1, \ldots, f_g)$ with $f_i \in K(x)$, $\deg f_i \geq 2$. Then for any K-endomorphism λ of X and any $\alpha \in X(K)$, the set \[\{ n : f^n(\alpha) \in \lambda(X(K)) \} \] is a finite union of arithmetic progressions.

If $\lambda = (\lambda_1, \ldots, \lambda_g)$ with $\lambda_i \in K(x)$, then the conjecture may be proved one coordinate at a time, and reduces to the case where $X = \mathbb{P}^1$.

Theorem (Cahn-RJ-Spear)

*The conjecture holds for $X = \mathbb{P}^1$ and $\lambda(y) = y^m$, where $m \in \mathbb{Z}$.***
Proof Sketch

Let \(f \in K(x) \), and note \(Z_n \) is the curve \(f^n(x) = y^m \). Suppose that \(O_f(\alpha) \cap (\mathbb{P}^1(K))^m \) is infinite, so that \(Z_n(K) \) is infinite for each \(n \).

First leap of faith First fact: For each \(n \), the infinitely many points in \(Z_n(K) \) are Zariski-dense in \(Z_n \).

Second leap of faith Second fact: The Bombieri-Lang conjecture is true for curves (Faltings’ Theorem). Therefore \(Z_n \) is not of general type for any \(n \), i.e. the genus of \(Z_n \) is \(\leq 1 \).
Third leap of faith Third step: Show the genus of $Z_n : f^n(x) = y^m$ is at least two unless some iterate of f has a “close functional relationship” to λ.

Definition

For $\beta \in \mathbb{P}^1(\mathbb{C})$, define $\rho_n(\beta)$ to be the number of $z \in f^{-n}(\beta)$ with $e_{fn}(z)$ not divisible by m. Call β m-branch abundant for f if $\rho_n(\beta)$ is bounded as $n \to \infty$.

From genus formulae for superelliptic curves, the genus of Z_n is bounded if and only if 0 and ∞ are m-branch abundant for f.
We classified all rational functions over \mathbb{C} with two m-branch abundant points, and showed their components are defined over K.

First attempt: determine all possible ramification structures of pre-image trees of an m-branch abundant point.

Figure 1. Ramification structures for $O^-(\alpha)$, where α is p-branch abundant for $f \in \mathbb{C}(z)$ and $p \nmid \deg f$.
FIGURE 2. Ramification structures for $O^-(\alpha)$, where α is p-branch abundant for $f \in \mathbb{C}(z)$ and $p \mid \deg f$.
The dynamical Mordell-Lang conjecture
A question over number fields
An arithmetic dynamical Mordell-Lang conjecture

Theorem (Cahn-RJ-Spear)

Let \(f \in K(x) \) and fix \(m \geq 2 \). Then the genus of \(Z_n : f^n(x) = y^m \) is bounded as \(n \to \infty \) if and only if one of the following holds:

- \(f(x) = cx^j(g(x))^m \) with \(g(x) \in K(x), \ 0 \leq j \leq m - 1, \ c \in K^* \);
- (requires \(m \in \{2, 3, 4\} \)) \(f \) is a Lattès map with 0 and \(\infty \) in its post-critical set;
- (requires \(m = 2 \)) Either \(f(x) \) or \(1/f(1/x) \) can be written in one of the following ways (\(B, C \in K^*, \ p, q, r \in K[x] \setminus \{0\} \)):
 1. \(-\frac{p(x)^2}{(x-C)q(x)^2} \) with \(p(x)^2 + C(x-C)q(x)^2 = Cx r(x)^2 \);
 2. \(-\frac{(x-C)p(x)^2}{q(x)^2} \) with \((x-C)p(x)^2 + Cq(x)^2 = xr(x)^2 \);
 3. \(B \frac{(x-C)p(x)^2}{q(x)^2} \) with \(B(x-C)p(x)^2 - Cq(x)^2 = -Cr(x)^2 \);
 4. \(B \frac{x(x-C)p(x)^2}{q(x)^2} \) with \(Bx(x-C)p(x)^2 - Cq(x)^2 = -Cr(x)^2 \);

In each case of the theorem, the genus of \(Z_n \) is at most 1 for all \(n \).
Theorem (Cahn-RJ-Spear)

Let $f \in K(x)$ and fix $m \geq 2$. Then the genus of $Z_n : f^n(x) = y^m$ is bounded as $n \to \infty$ if and only if one of the following holds:

- $f(x) = cx^j(g(x))^m$ with $g(x) \in K(x)$, $0 \leq j \leq m - 1$, $c \in K^*$;
- (requires $m \in \{2, 3, 4\}$) f is a Lattès map with 0 and ∞ in its post-critical set;
- (requires $m = 2$) Either $f(x)$ or $1/f(1/x)$ can be written in one of the following ways ($B, C \in K^*, p, q, r \in K[x] \setminus \{0\}$):
 1. $-\frac{p(x)^2}{(x-C)q(x)^2}$ with $p(x)^2 + C(x - C)q(x)^2 = Cx r(x)^2$;
 2. $-\frac{(x-C)p(x)^2}{q(x)^2}$ with $(x - C)p(x)^2 + Cq(x)^2 = xr(x)^2$;
 3. $B \frac{(x-C)p(x)^2}{q(x)^2}$ with $B(x - C)p(x)^2 - Cq(x)^2 = -Cr(x)^2$;
 4. $B \frac{x(x-C)p(x)^2}{q(x)^2}$ with $Bx(x - C)p(x)^2 - Cq(x)^2 = -Cr(x)^2$;

In each case of the theorem, the genus of Z_n is at most 1 for all n.
Theorem (Cahn-RJ-Spear)

Let \(f \in K(x) \) and fix \(m \geq 2 \). Then the genus of \(Z_n : f^n(x) = y^m \) is bounded as \(n \to \infty \) if and only if one of the following holds:

1. \(f(x) = cx^j(g(x))^m \) with \(g(x) \in K(x), 0 \leq j \leq m-1, c \in K^* \);
2. (requires \(m \in \{2, 3, 4\} \)) \(f \) is a Lattès map with 0 and \(\infty \) in its post-critical set;
3. (requires \(m = 2 \)) Either \(f(x) \) or \(1/f(1/x) \) can be written in one of the following ways (\(B, C \in K^*, p, q, r \in K[x] \setminus \{0\} \)):
 1. \[-\frac{p(x)^2}{(x-C)q(x)^2} \text{ with } p(x)^2 + C(x - C)q(x)^2 = Cx^2 \]
 2. \[-\frac{(x-C)p(x)^2}{q(x)^2} \text{ with } (x - C)p(x)^2 + Cq(x)^2 = xr(x)^2 \]
 3. \[B\frac{(x-C)p(x)^2}{q(x)^2} \text{ with } B(x - C)p(x)^2 - Cq(x)^2 = -Cr(x)^2 \]
 4. \[B\frac{x(x-C)p(x)^2}{q(x)^2} \text{ with } Bx(x - C)p(x)^2 - Cq(x)^2 = -Cr(x)^2 \]

In each case of the theorem, the genus of \(Z_n \) is at most 1 for all \(n \).
Lattès maps

We say $f \in \mathbb{C}(z)$ is a Lattès map if there is an elliptic curve E, a morphism $\mu : E \to E$, and a finite separable map π such that the following diagram commutes:

\[
\begin{array}{ccc}
E & \xrightarrow{\mu} & E \\
\downarrow{\pi} & & \downarrow{\pi} \\
\mathbb{P}^1 & \xrightarrow{f} & \mathbb{P}^1
\end{array}
\]

Natural choices: π is the x-coordinate projection and $\mu = [j]$.
Question

Let $X = \mathbb{A}^2$ and $\lambda(y_1, y_2) = (y_1^{m_1}, y_2^{m_2})$ with $m_1, m_2 \geq 2$. Are there interesting examples of $f : \mathbb{A}^2 \to \mathbb{A}^2$ not of the form $(f_1(x_1), f_2(x_2))$ such that $Z_n : f^n(x_1, x_2) = (y_1^{m_1}, y_2^{m_2})$ is a surface of Kodaira dimension ≤ 2 for all n?

Corollary

Let $f \in K(x)$, fix $m \geq 2$, and suppose that the genus of Z_n is bounded as $n \to \infty$. Then there exist $a > b \geq 0$ with $f^a(x) = f^b(x)(g(x))^m$ for some $g(x) \in K(x)$.

Corollary

$\{n : f^n(\alpha) \in (\mathbb{P}^1(K))^m\}$ is a finite union of arithmetic progressions, of modulus bounded by $a - b$.
Maximum modulus?

Example: let

\[f(x) = \frac{2(x - 2)(x + 2)^3}{x(x - 4)^3}. \]

Then \(a = 3, b = 0 \) (\(f^3(x) = x(g(x))^3 \)), and no smaller \(a, b \) suffice.

\[O_f(6) = \left\{ 6, \frac{4}{3} \cdot 4^3, \left(\frac{655}{488} \right)^3, 6 \left(-\frac{129900299507}{120418942015} \right)^3, \ldots \right\} \]

Indeed, for all \(m \geq 3 \) the modulus is bounded by \(m \), and this is best possible (independent of \(K \)):

Let \(f(x) = cx(x + 1)^m \), where \(c \notin K^p \) for each prime \(p \) dividing \(m \).

Then \(f^i(1) = c^i(k_i)^m \) for \(k_i \in K \), for all \(1 \leq i \leq m - 1 \). But \(c^i \notin K^m \), and so \(\{ n : f^n(1) \in (\mathbb{P}^1(K))^m \} = \{ 0, m, 2m, 3m, \ldots \} \).
For \(m = 2 \) one must have \(a - b \leq 4 \). This is attained by certain Lattès maps descending from CM elliptic curves.

Example:

\[
f(x) = (8 + 4\sqrt{3}) \frac{(x - 1)(x - (4 + 4\sqrt{3}))^2}{x(x - (6 + 4\sqrt{3}))^2}
\]

has post-critical orbit

\[
0 \to \infty \to 8 + 4\sqrt{3} \to 1 \to 0.
\]

Thus \(f^4(x) = x(g(x))^4 \), but \(f^i(x) \) is not of this form for \(i = 1, 2, 3 \).

This map arises from taking \(E \) to have CM by \(\mathbb{Z}[\sqrt{-3}] \),

\[
\mu(P) = [\sqrt{-3}]P + T,
\]

where \(T \) is a non-trivial 2-torsion point, and \(\pi \) to be projection onto the \(x \)-coordinate.
Question 1: Is it possible for a Lattès map with a post-critical four-cycle to have $\alpha \in K$ with $\{ n : f^n(\alpha) \in (\mathbb{P}^1(K))^2 \}$ an arithmetic progression of modulus 4?

Question 2: Can Lattès maps with a post-critical four-cycle be defined over \mathbb{Q}?
Thank you!