Galois actions on preimage trees

Rafe Jones

College of the Holy Cross

July 23, 2009
Motivating problem: prime divisors of polynomial orbits

Let $f \in \mathbb{Z}[x]$, and denote the nth iterate of f by f^n.

Let $O_f(a) = \{f^n(a) : n = 0, 1, 2, \ldots\}$ denote the orbit of $a \in \mathbb{Z}$ under f. The orbits of f can hold great number-theoretic interest.

Examples:

- $f(x) = (x - 1)^2 + 1 = x^2 - 2x + 2$.

 $O_f(3) = \{3, 5, 17, 257, 65537, \ldots\}$.
 Fermat numbers ($F_n = 2^{2^n} + 1$).

- $f(x) = x^2 - x + 1$.

 $O_f(2) = \{2, 3, 7, 43, 1807, \ldots\}$
 Sylvester’s sequence ($s_0 = 2, s_n = s_0 \cdots s_{n-1} + 1$).
Problem of recurrent interest: show various sequences have infinitely many prime terms.

Dirichlet: \((cn + d)_{n \geq 1}\) contains infinitely many primes (provided \((c, d) = 1\)).

Open problems: show \((n^2 + 1)_{n \geq 1}\) contains infinitely many primes. Show the Fibonacci sequence contains infinitely many primes.

Conjecture (Fermat)

\(F_n\) is prime for all \(n\)

Slightly Revised Conjecture

\(F_n\) is composite for all \(n \geq 5\).
Rather than investigate prime terms in polynomial orbits, we consider the set of all primes dividing at least one term of a given orbit:

\[P(O_f(a)) = \{ p \text{ prime} : p \text{ divides some element of } O_f(a) \} \]

(Can extend to rational functions by considering \(p \) dividing the numerator of some element of the orbit.)

By the *natural upper density* of a set of primes \(S \subset \mathbb{Z} \), we mean

\[D(S) = \limsup_{x \to \infty} \frac{\# \{ p \in S : p \leq x \}}{\# \{ p : p \leq x \}} , \]

Our main affair is to determine \(D(P(O_f(a))) \) in various cases.
Main Theorem (RJ, RJ-Manes)

The following $f \in \mathbb{Q}(x)$ satisfy $D(P(O_f(a))) = 0$ for all $a \in \mathbb{Z}$:

- $x^2 - kx + k$ for $k \in \mathbb{Z}$
- $x^2 - kx + 1$ for $k \in \mathbb{Z} \setminus \{0, 2\}$
- $x^2 + k$ for $k \in \mathbb{Z} \setminus \{-1\}$
- $\frac{k(x^2 + 1)}{x}$ for odd $k \in \mathbb{Z}$ having no prime factor $\equiv 1 \mod 4$
Lemma

Fix $n \geq 1$ and $f \in \mathbb{Z}[x]$, and let

$$d_n = 1 - D(p : f^n(x) \equiv 0 \mod p \text{ has no solution in } \mathbb{Z}).$$

Then for any $a \in \mathbb{Z}$, $D(P(O_f(a))) < d_n$.

Proof sketch: $f^n(x) \equiv 0 \mod p$ has no solution implies $p \nmid f^m(a)$ for all $m \geq n$. There are only finitely many p for which $p \mid f^m(a)$ for some $m < n$.
Lemma
Let G_n be the Galois group of the splitting field of $f^n(x)$ over \mathbb{Q}, and recall G_n acts naturally on the roots of f^n. We have

$$d_n = \frac{1}{\#G_n} \#\{\sigma \in G_n : \sigma \text{ fixes at least one root of } f^n\}.$$

Proof: Classical application of the Chebotarev Density theorem.

Conclusion: $D(P(O_f(a)))$ is bounded above by

$$\frac{1}{\#G_n} \#\{\sigma \in G_n : \sigma \text{ fixes at least one root of } f\}.$$

Remark: A similar statement holds for $f \in \mathbb{Q}(x)$, provided that $f(\infty) = \infty$.
Arboreal representations

Let K be a number field, $f \in K(x)$, and $b \in \mathbb{P}^1(K)$. The *preimage tree* of f with root b has as vertices

$$\bigsqcup_{n \geq 1} f^{-n}(b),$$

with two elements connected iff f maps one to the other.
First two levels of preimage tree of $f(x) = \frac{x^2+1}{x}$, $b = 0$.

\[
\begin{align*}
-\sqrt{\frac{-3-\sqrt{5}}{2}} & \quad \sqrt{\frac{-3+\sqrt{5}}{2}} \\
\quad & \quad -\sqrt{\frac{-3+\sqrt{5}}{2}} \quad \sqrt{\frac{-3-\sqrt{5}}{2}} \\
-\sqrt{\frac{-3-\sqrt{5}}{2}} & \quad \sqrt{\frac{-3+\sqrt{5}}{2}} \\
-\sqrt{\frac{-3+\sqrt{5}}{2}} & \quad \sqrt{\frac{-3-\sqrt{5}}{2}} \\
-\sqrt{\frac{-3-\sqrt{5}}{2}} & \quad \sqrt{\frac{-3+\sqrt{5}}{2}} \\
0 & \quad 0
\end{align*}
\]
Let $K_n = K(f^{-n}(b))$, $G_n = \text{Gal}(K_n/K)$, and $G_\infty = \varprojlim G_n$. All these objects depend on f and b, but to ease notation we don’t make explicit reference to this dependence.

Let T_∞ be the full preimage tree of f and T_n its truncation to the nth level. Since f has coefficients in K, G_n respects the connectivity relation in T_n, giving natural injections

$$G_n \hookrightarrow \text{Aut}(T_n) \quad G_\infty \hookrightarrow \text{Aut}(T_\infty).$$

Remark: in the typical case that b avoids the orbits of all critical points of f, T_∞ is the complete $(\deg f)$-ary rooted tree, and $\text{Aut}(T_\infty)$ is a well-understood group.
Example: Let T_2 be the complete binary rooted tree of height 2, and label the vertices at the top level of T_2 by 1, 2, 3, 4. Then
\[\text{Aut}(T_2) \cong \{ e, (12), (34), (12)(34), (1324), (1423), (13)(24), (14)(23) \} = D_4. \]

In general for T_n the complete binary rooted tree of height n, $\text{Aut}(T_n)$ is the n-fold iterated wreath product of $\mathbb{Z}/2\mathbb{Z}$.

Aside on conjugacy-invariance: the group G_∞ associated to (f, b) is the same as the group associated to $(\psi \circ f \circ \psi^{-1}, \psi(b))$, for any $\psi \in PGL_2(K)$. However, we often wish to keep b constant and let f vary, and in such a case we can only use ψ that fix b.
Generalizations

One can generalize this construction by replacing V by an algebraic variety and f by a finite morphism.

When $V = E$ is an elliptic curve, $f = [\ell]$ for a prime ℓ, and $b = O$, $G_{\infty} \hookrightarrow \text{GL}_2(\mathbb{Z}_\ell)$ is the image of the ℓ-adic linear Galois representation associated to E. Serre showed that if E does not have complex multiplication, then $[\text{GL}_2(\mathbb{Z}_\ell) : G_{\infty}]$ is finite.

When V is a commutative algebraic group and f is multiplication by n, determining G_{∞} amounts to doing Kummer theory on V.
For remainder of the talk, we return to the case $V = \mathbb{P}^1$, and we let $b = 0$.

Questions: For which $f \in K(x)$ can one determine G_∞? When does G_∞ have finite index in $\text{Aut}(T_\infty)$?
Theorem (Odoni 1985)

Let $f(x) \in K(t_0, \ldots, t_d)[x]$ be the generic polynomial of degree d over K. Then $G_\infty \cong \text{Aut}(T_\infty)$.

In particular, if n is fixed then for all but a ‘thin set’ of degree d $f \in K[x]$ we have $G_n \cong \text{Aut}(T_n)$.

Theorem (Odoni 1985)

Let $f(x) = x^2 - x + 1$. Then $G_\infty \cong \text{Aut}(T_\infty)$
Quadratic polynomials

Theorem (RJ)

Let $f \in \mathbb{Z}[x]$ be monic and quadratic. Suppose all iterates of f are irreducible over \mathbb{Q}, f is not post-critically finite, and 0 is pre-periodic (but not periodic) under f. Then G_∞ has finite index in $\text{Aut}(T_\infty)$.

The above theorem applies to $f(x) = x^2 - kx + k$ for all $k \in \mathbb{Z}$ except $-2, 0, 2,$ and 4, for which G_∞ is either degenerate ($k = 0$) or explicitly computable and of infinite index in $\text{Aut}(T_\infty)$.

It also applies to $f(x) = x^2 + kx - 1$ for all $k \in \mathbb{Z}$ except $-1, 0, 2$. When $k = -1$, $f^3(x)$ is reducible, but nonetheless one can show G_∞ has finite index in $\text{Aut}(T_\infty)$. For $k = 0$ and 2, G_∞ remains unknown, but appears to have infinite index in $\text{Aut}(T_\infty)$.
Theorem (Stoll 1992)

Let \(f = x^2 + k \in \mathbb{Z}[x] \) where \(-k\) is not a square, and suppose that one of the following holds:

- \(k > 0, k \equiv 1 \mod 4 \)
- \(k > 0, k \equiv 2 \mod 4 \)
- \(k < 0, k \equiv 0 \mod 4 \)

Then \(G_\infty \cong \text{Aut}(T_\infty) \).

Remark: for \(f = x^2 + 3 \), \([\text{Aut}(T_\infty) : G_\infty]\) \(\geq 2 \). Not known to be finite.
Quadratic rational functions with non-trivial automorphisms

The case where \(f \in K(x) \) commutes with a non-trivial \(\psi \in \text{PGL}_2(K) \), and \(a \) is a fixed point of \(\psi \), is analogous to the case of an elliptic curve with complex multiplication.

In recent work with M. Manes, we study the family \(f = \frac{k(x^2+1)}{x} \), \(k \in \mathbb{Z} \), which has \(\psi(x) = -x \) (recall our running assumption \(b = 0 \)). Here, \(G_\infty \hookrightarrow C_\infty \), where \(C_\infty \) is the subgroup of \(\text{Aut}(T_\infty) \) commuting with the action of \(\psi \) on \(T_\infty \).

For all \(n \), \(C_n \) has a subgroup of index two isomorphic to \(\text{Aut}(T_{n-1}) \).
Motivating problem
Ideas in the proof
Further directions and open problems

Part I: Connections with Galois Theory
Part II: Arboreal Galois representations
A survey of results on arboreal representations
Part III: counting elements with fixed points

Rafe Jones Galois actions on preimage trees
Theorem (RJ-Manes)

There is a density 0 set of primes $S \subset \mathbb{Z}$ such that if $k \in \mathbb{Z}$ is not divisible by any $s \in S$ and $f = \frac{k(x^2+1)}{x}$, then $G_\infty \cong C_\infty$.

Notes: S is the set of primes dividing the numerator of $f^n(1)$ for some $n \geq 1$, where $f = \frac{(x^2+1)}{x}$. All p in S are $\equiv 1 \pmod{4}$.
Recall: \(D(P(O_f(a))) \) is bounded above by

\[
d_n = \frac{1}{\#G_n} \# \{ \sigma \in G_n : \sigma \text{ fixes at least one root of } f \}.
\]

Suppose \(G_\infty \cong \text{Aut}(T_\infty) \).

\(G_1 \cong \{ e, (12) \}. \quad d_1 = 1/2 \)
\(G_2 \cong \{ e, (12), (34), (12)(34), (1324), (1423), (13)(24), (14)(23) \}. \)
\(d_2 = 3/8 \)
\(d_3 = 39/128 \)
Let \(e_n = 1 - d_n \). Then one can show \(e_n = \frac{1}{2} e_{n-1}^2 + \frac{1}{2} \).

It follows that \(e_n \to 1 \), and thus \(d_n \to 0 \). A similar argument can be used to show that \(d_n \to 0 \) when \(G_\infty \cong C_\infty \). This proves the main theorem in the case \(f = k\left(\frac{x^2+1}{x}\right) \) for certain \(k \).

Let \(f \in \mathbb{Z}[x] \) be quadratic with \(f^n \) irreducible, and let \(H_n = \text{Gal}(K_n/K_{n-1}) \). Since \(K_n = K_{n-1}(f^{-1}(\alpha)) \) as \(\alpha \) runs over \(f^{-(n-1)}(b) \), we have \(H_n \hookrightarrow \left(\mathbb{Z}/2\mathbb{Z}\right)^{2^{n-1}} \). Call \(H_n \text{ maximal} \) if this injection is an isomorphism.

Theorem (RJ)

Suppose that \(f \) is quadratic, \(f^n \) is irreducible for all \(n \), and \(H_n \) is maximal for infinitely many \(n \). Then \(d_n \to 0 \).
In particular, if f^n is irreducible for all n, and $[\text{Aut}(T_\infty) : G_\infty] < \infty$, then the set of prime divisors of any orbit of f has density zero. This can be used to prove the Main Theorem in the cases $f = x^2 - kx + k$, $k \in \mathbb{Z}$, and $f = x^2 - kx + 1$, $k \in \mathbb{Z} \setminus \{0, 2\}$.

The hypothesis that H_n be maximal for infinitely many n is much weaker than $[\text{Aut}(T_\infty) : G_\infty] < \infty$, and can be made to apply in cases where the latter is unknown.

For instance, $f(x) = x^2 + k \in \mathbb{Z}[x]$, where $-k$ is not a square, proving the main theorem in this case.

Also, $f(x) = x^2 + t \in \mathbb{F}_p(t)[x]$.
Conjecture

Suppose that $f = x^2 + ax + b \in \mathbb{Z}[x]$ with critical point γ, and suppose that $O_f(\gamma)$ is infinite and f^n is irreducible for all n. Then for any $a \in \mathbb{Z}$,

$$D(P(O_f(a))) = 0.$$

Bad example: $f(x) = (x + 945)^2 - 945 + 3$, $\gamma = -945$.

$$f(\gamma) = 2 \cdot 3 \cdot 157$$
$$f^2(\gamma) = 3 \cdot 311$$
$$f^3(\gamma) = 2 \cdot 3 \cdot 7 \cdot 19$$
$$f^4(\gamma) = 3 \cdot 83^2$$
$$f^5(\gamma) = 2 \cdot 3 \cdot 103 \cdot 755789$$
The results showing G_∞ is a large subgroup of $\text{Aut}(T_\infty)$ for quadratic $f \in \mathbb{Q}(x)$ rely on f not being post-critically finite. In the absence of this, the group G_∞ is often mysterious.

Polynomials conjugate to $x^2 - 1$ provide particularly interesting examples: in the case of $f(x) = (x + 1)^2 - 2$, K_∞ is ramified over \mathbb{Q} only at the prime 2.
Analogies with linear representations

In the case of a linear Galois representation $\rho : G_\infty \hookrightarrow GL_2(\mathbb{Z}_\ell)$, we may form an associated L-function via an Euler product where the local factors at the unramified primes p are

$$1 - \text{tr}(\rho(\text{Frob}_p))p^{-s} + p^{1-2s},$$

where $\text{Frob}_p \subset G_\infty$ denotes the conjugacy class of Frobenius at p. This prompts a search for conjugacy-invariants one can attach to Frob_p in the arboreal case.
For \(f(x) \in \mathbb{Z}[x] \), \(b = 0 \), it is a classical fact that for all but finitely many \(p \), the cycle structure of the image of \(\text{Frob}_p \) in \(G_n \) is given by the degrees of the irreducible factors of \(f^n(x) \) in \(\mathbb{Z}/p\mathbb{Z}[x] \).

Call \(h \in \mathbb{Z}/p\mathbb{Z}[x] \) \(f \)-stable if \(h \circ f^m \) is irreducible in \(\mathbb{Z}/p\mathbb{Z}[x] \) for all \(m \geq 0 \). Weight the irreducible factors of \(f^n \in \mathbb{Z}/p\mathbb{Z}[x] \) by degree. If the proportion of the factorization occupied by \(f \)-stable factors goes to 1 as \(n \to \infty \), call \(f \) settled.

To each settled element one can associate a partition of unity according to the weight occupied by each stable factor. Example: \(f(x) = (x + 3)^2 - 3 \), \(p = 13 \). \(f(x) = (x + 3)(x + 4) \), and one can show both \(x + 3 \) and \(x + 4 \) are \(f \)-stable. The associated partition is thus \(\frac{1}{2} + \frac{1}{2} \).

Conjecture

Let \(f \in \mathbb{Z}/p\mathbb{Z}[x] \) be separable and quadratic. Then \(f \) is settled.