Note: the exam will have 3-4 questions like the ones below, as well as a section of short answer questions similar to the one on the first exam. To review for those, the best thing is to work the true/false review questions listed on the main course webpage.

1. Find a bases for the kernel and image of the following matrix:
 \[A = \begin{bmatrix}
 1 & 0 & 2 & 0 & 1 \\
 -3 & 0 & 0 & 1 & 0 \\
 -1 & 0 & 4 & 1 & 2
 \end{bmatrix}. \]

2. Find a basis for the following subspace of \(P_4 \).
 \[W = \{ p(x) \in P_4 \mid p(1) = p(-1) = 0 \}. \]
 What is the dimension of \(W \)?

3. Determine whether the following mappings are linear transformations. Either prove that a given map is linear or give a counterexample to show it’s not linear.
 (a) \(T : \mathbb{R}^2 \to \mathbb{R}^3 \) defined by \(T((x_1, x_2)) = (2x_1, x_1 + 4, 5x_2) \)
 (b) \(T : P_2 \to P_3 \) defined by \(T(a_2x^2 + a_1x + a_0) = a_0x^3 + (a_1 - a_0)x^2 + 3a_2 - (1/2)a_0 \)

4. Let \(V \) be a subspace of \(\mathbb{R}^n \) with \(\dim(V) = n \). Explain why \(V = \mathbb{R}^n \).

5. (a) Consider the mapping \(T : \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2} \) defined by
 \[
 T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + b & c - b \\ b + 2d - 3c & d + 4a \end{pmatrix}.

 Prove that \(T \) is a linear transformation.
 (b) Given the basis \(\alpha = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \) of \(\mathbb{R}^{2\times 2} \),
 give the matrix \([T]_\alpha \) of \(T \) with respect to the basis \(\alpha \).
 (c) Show that \(T \) is an isomorphism, and use the determinant in your solution.

6. The mapping \(T : \mathbb{R}^2 \to P_2 \) given by \(T \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = (a_1 + a_2)x^2 + a_2x + a_1 \) is a linear transformation.
 (a) Prove that \(\alpha = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\} \) is a basis for \(\mathbb{R}^2 \) and \(\beta = \{x^2 + 2, x^2 + x, 1\} \) is a basis for \(P_2 \).
 (b) Find the matrix \([T]_\alpha^\beta \)
 (c) What is the dimension of \(\text{Ker}(T) \)? Find a basis for \(\text{Ker}(T) \).
 (d) What is the dimension of \(\text{Im}(T) \)? Find a basis for \(\text{Im}(T) \).