Introducing 05A06: Patterns in Permutations and Words

Eric S. Egge
Carleton College
September 20, 2014
The Case

There are connections with many other areas.
The Case

There are connections with many other areas.

There are already numerous cool results.
There are connections with many other areas.

There are already numerous cool results.

We’ve answered some deep questions.
There are connections with many other areas.

There are already numerous cool results.

We’ve answered some deep questions.

Even more open problems remain, some just as deep.
The Case

There are connections with many other areas.

There are already numerous cool results.

We’ve answered some deep questions.

Even more open problems remain, some just as deep.

Surprising and exciting new ideas and approaches surface regularly.
The Case

There are connections with many other areas.

There are already numerous cool results.

We’ve answered some deep questions.

Even more open problems remain, some just as deep.

Surprising and exciting new ideas and approaches surface regularly.

There’s room for all, from undergraduates to wily veterans.
Suppose π and σ are permutations, written in one-line notation. An occurrence of σ in π is a subsequence of π whose entries are in the same relative order as the entries of σ.
Suppose π and σ are permutations, written in one-line notation. An occurrence of σ in π is a subsequence of π whose entries are in the same relative order as the entries of σ.

Example

3561274 contains 9 occurrences of 21.
(inversions)
Suppose π and σ are permutations, written in one-line notation. An occurrence of σ in π is a subsequence of π whose entries are in the same relative order as the entries of σ.

Example

3561274 contains 12 occurrences of 12. (coinversions)
The Definition

Definition
Suppose π and σ are permutations, written in one-line notation. An \textit{occurrence} of σ in π is a subsequence of π whose entries are in the same relative order as the entries of σ.

Example

3561274 contains 7 occurrences of 312.
The Definition

Definition

Suppose π and σ are permutations, written in one-line notation. An occurrence of σ in π is a subsequence of π whose entries are in the same relative order as the entries of σ.

Example

3561274 contains 7 occurrences of 312.
Suppose π and σ are permutations, written in one-line notation. An occurrence of σ in π is a subsequence of π whose entries are in the same relative order as the entries of σ.

![Diagram](image-url)
Definition

Suppose π and σ are permutations, written in one-line notation. An occurrence of σ in π is a subsequence of π whose entries are in the same relative order as the entries of σ.
Suppose π and σ are permutations, written in one-line notation. An occurrence of σ in π is a subsequence of π whose entries are in the same relative order as the entries of σ.
Observation

Every symmetry f of the square is a bijection between occurrences of σ in π and occurrences of σ^f in π^f.
Enumeration Questions

$$\sigma[\pi] := \text{number of occurrences of } \sigma \text{ in } \pi$$
Enumeration Questions

\[\sigma[\pi] := \text{number of occurrences of } \sigma \text{ in } \pi \]

Theorem (Rodrigues, 1839)

\[
\sum_{\pi \in S_n} q^{21[\pi]} = 1(1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1})
\]
Enumeration Questions

\[\sigma[\pi] := \text{number of occurrences of } \sigma \text{ in } \pi\]

Theorem (Rodrigues, 1839)

\[
\sum_{\pi \in S_n} q^{2\sigma[\pi]} = (1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1})
\]

Problem

For each \(\sigma\), find \(\sum_{\pi \in S_n} q^{\sigma[\pi]}\).
Enumeration Questions

σ[π] := number of occurrences of σ in π

Theorem (Rodrigues, 1839)

\[\sum_{\pi \in S_n} q^{2[\pi]} = 1(1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1}) \]

Ambition

For each σ, find \(\sum_{\pi \in S_n} q^{\sigma[\pi]} \).
σ[π] := number of occurrences of σ in π

Theorem (Rodrigues, 1839)

\[\sum_{\pi \in S_n} q^{\sigma[\pi]} = 1(1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1}) \]

Dream

For each σ, find \(\sum_{\pi \in S_n} q^{\sigma[\pi]} \).
Enumeration Questions

\[\sigma[\pi] := \text{number of occurrences of } \sigma \text{ in } \pi \]

Theorem (Rodrigues, 1839)

\[\sum_{\pi \in S_n} q^{2\sigma[\pi]} = 1(1 + q)(1 + q + q^2) \cdots (1 + q + \cdots + q^{n-1}) \]

Opium-Induced Fever Dream

For each \(\sigma \), find \(\sum_{\pi \in S_n} q^{\sigma[\pi]} \).
Definition

We say π avoids σ whenever $\sigma[\pi] = 0$.
Definition

We say π avoids σ whenever $\sigma[\pi] = 0$.

$$Av_n(\sigma) = S_n(\sigma) := \text{set of permutations in } S_n \text{ which avoid } \sigma$$
Definition

We say π avoids σ whenever $\sigma[\pi] = 0$.

$Av_n(\sigma) = S_n(\sigma) :=$ set of permutations in S_n which avoid σ

Question

For each n and each σ, what is $|Av_n(\sigma)|$?
Definition

We say π avoids σ whenever $\sigma[\pi] = 0$.

$Av_n(R) = S_n(R) := \text{set of permutations in } S_n \text{ which avoid all } \sigma \in R$

Question

For each n and each R, what is $|Av_n(R)|$?
We say patterns σ_1 and σ_2 are *Wilf-equivalent* whenever

$$|Av_n(\sigma_1)| = |Av_n(\sigma_2)|$$

for all n.

Definition
Definition

We say patterns σ_1 and σ_2 are \textit{Wilf-equivalent} whenever

$$|Av_n(\sigma_1)| = |Av_n(\sigma_2)|$$

for all n.

Question

Which patterns of each length are Wilf-equivalent?
Enumerative Results

| σ | $|\text{Av}_n(\sigma)|$ | OGF |
|----------|-------------------------|-----|
| 123 | $\frac{1}{n+1} \binom{2n}{n}$ | $\frac{1 - \sqrt{1 - 4x}}{2x}$ |
| 132 | | |
More Enumerative Results

| R | $|Av_n(R)|$ | OGF |
|--------------|------------------|--|
| 123, 132 | 2^{n-1} | $\frac{1 - x}{1 - 2x}$ |
| 123, 231 | $1 + \binom{n}{2}$ | $\frac{1 - 2x + 2x^2}{(1 - x)^3}$ |
| 123, 321 | 0 for $n \geq 5$ | $1 + x + 2x^2 + 4x^3 + 4x^4$ |
| 123, 132, 213| F_{n+1} | $\frac{1}{1 - x - x^2}$ |
| 123, 132, 231| n | $\frac{1}{(1 - x)^2}$ |
Even More Enumerative Results

| \(R \) | \(|Av_n(R)| \) | OGF |
|---|---|---|
| 123, 3412 | \(2^{n+1} - \binom{n+1}{3} - 2n - 1 \) | \(\frac{1 - 5x + 10x^2 - 9x^3 + 4x^4}{(1 - 2x)(1 - x)^4} \) |
| 132, 4231 | \(1 + (n - 1)2^{n-2} \) | \(\frac{1 - 4x + 5x^2 - x^3}{(1 - 2x)^2(1 - x)} \) |
| 123, 2143 | \(F_{2n} \) | \(\frac{1 - 2x}{1 - 3x + x^2} \) |
Still More Enumerative Results

| R | $|Av_n(R)|$ | OGF |
|-----|--------------|-----|
| 2143, 3412 | $(2n) - \sum_{m=0}^{n-1} 2^{n-m-1} \binom{2m}{m}$ | $\frac{1 - 3x}{(1 - 2x) \sqrt{1 - 4x}}$ |
| 1234, 3214 | | |
| 4123, 3214 | $4^{n-1} + 2$ | $\frac{x(1 - 3x)}{(1 - x)(1 - 4x)}$ |
| 2341, 2143 | | |
| 1234, 2143 | | |
| 1324, 2143 | | $\frac{1 - 5x + 3x^2 + x^2 \sqrt{1 - 4x}}{1 - 6x + 8x^2 - 4x^3}$ |
| 1342, 2431 | | |
| 1342, 2341 | | |
| 1342, 2314 | | |
| 1324, 2413 | | |
| 2413, 3142 | | |
| 1234, 2134 | | |
| 1324, 2314 | | |
| 3124, 3124 | $r_{n-1} = \sum_{d=0}^{n} C_{n-d} \binom{2n-d}{d}$ | $\frac{1 - x - \sqrt{1 - 6x + x^2}}{2x}$ |
| 3142, 3214 | | |
| 3412, 3421 | | |
| 1324, 2134 | | |
| 3124, 2314 | | |
| 2134, 3124 | | |
Some Open Enumerative Problems

| R | $|\text{Av}_n(R)|$ for $n = 5, 6, 7, 8, 9, 10$ |
|-----------------|-----------------------------------|
| 1234, 3412 | 86, 333, 1235, 4339, 14443, 45770 |
| 1243, 4231 | 86, 335, 1266, 4598, 16016, 53579 |
| 1324, 3412 | 86, 335, 1271, 4680, 16766, 58656 |
| 1324, 4231 | 86, 336, 1282, 4758, 17234, 61242 |
| 1243, 3412 | 86, 337, 1295, 4854, 17760, 63594 |
| 1324, 2341 | 87, 352, 1428, 5768, 23156, 92416 |
| 1342, 4123 | 87, 352, 1434, 5861, 24019, 98677 |
| 1243, 2134 | 87, 354, 1459, 6056, 25252, 105632 |
| 1243, 2431 | 88, 363, 1507, 6241, 25721, 105485 |
| 1324, 2431 | 88, 363, 1508, 6255, 25842, 106327 |
| 1243, 2341 | 88, 365, 1540, 6568, 28269, 122752 |
| 1342, 3412 | 88, 366, 1556, 6720, 29396, 129996 |
| 1243, 2413 | 88, 367, 1568, 6810, 29943, 132958 |
| 1243, 3124 | 88, 367, 1571, 6861, 30468, 137229 |
| 1234, 2341 | 89, 376, 1611, 6901, 29375, 123996 |
| 1342, 2413 | 89, 379, 1664, 7460, 33977, 156727 |
| 1324, 1432 | 89, 380, 1677, 7566, 34676, 160808 |
| 1234, 1342 | 89, 380, 1678, 7584, 34875, 162560 |
| 1432, 2143 | 89, 381, 1696, 7781, 36572, 175277 |
| 1243, 1432 | 89, 382, 1711, 7922, 37663, 182936 |
| 2143, 2413 | 90, 395, 1823, 8741, 43193, 218704 |
Just A Couple More Enumerative Results

| σ | $|Av_n(\sigma)|$ |
|----------|----------------|
| 1234 | $(n+1)(n+2)$ |
| 1243 | $rac{1}{(n+1)^2(n+2)} \sum_{j=0}^{n} (2j)(n+1)(n+2)$ |
| 2143 | $(-1)^{n-1} \frac{7n^2 - 3n - 2}{2} + 3 \sum_{j=2}^{n} \frac{(2j-4)!}{j!(j-2)!} \binom{n-j+2}{2}(-1)^{n-j}2^{j+1}$ |
| 3214 | Unknown beyond $n = 36$ |
“Not even God knows $|\text{Av}_{1000}(1324)|$."

Doron Zeilberger
“Not even God knows $|Av_{1000} (1324)|$.”
Doron Zeilberger

“I’m not sure how good Zeilberger’s God is at math,

Einar Steingrímsson
“Not even God knows $|Av_{1000}(1324)|$.”
Doron Zeilberger

“I’m not sure how good Zeilberger’s God is at math, but I believe that some humans will find this number in the not so distant future.”
Einar Steingrímsson
The Stanley-Wilf Conjecture

Theorem

For all $\sigma \in S_3$,

$$\lim_{n \to \infty} n^{\sqrt{\left| Av_n(\sigma) \right|}} = 4.$$
The Stanley-Wilf Conjecture

Theorem

For all $\sigma \in S_3$,

$$\lim_{n \to \infty} n^{\frac{n}{\sqrt{|Av_n(\sigma)|}}} = 4.$$

Wilf’s First Question, \sim 1980

Is

$$|Av_n(\sigma)| \leq (|\sigma| + 1)^n$$

for all n?
The Stanley-Wilf Conjecture

Theorem

For all $\sigma \in S_3$,

$$\lim_{n \to \infty} n \sqrt{|Av_n(\sigma)|} = 4.$$

Wilf’s First Question, \sim 1980

Is

$$|Av_n(\sigma)| \leq (|\sigma| + 1)^n$$

for all n?
The Stanley-Wilf Conjecture

Theorem

For all $\sigma \in S_3$,

$$\lim_{n \to \infty} n^{\frac{1}{n}} |Av_n(\sigma)| = 4.$$

Wilf’s First Question, \sim 1980

Is

$$|Av_n(\sigma)| \leq (|\sigma| + 1)^n$$

for all n?
The Stanley-Wilf Conjecture

Theorem

For all $\sigma \in S_3$,

$$\lim_{n \to \infty} \sqrt[n]{|Av_n(\sigma)|} = 4.$$

Wilf’s First Question, ~ 1980

Is

$$|Av_n(\sigma)| \leq (|\sigma| + 1)^n$$

for all n?

Theorem (Regev, 1981)

$$\lim_{n \to \infty} \sqrt[n]{|Av_n(12\cdots k)|} = (k - 1)^2$$
The Stanley-Wilf Conjecture

Stanley’s Question, ~ 1980

Is

$$\lim_{n \to \infty} \sqrt[n]{|Av_n(\sigma)|} = (|\sigma| - 1)^2$$

for all σ?
The Stanley-Wilf Conjecture

Stanley’s Question, ∼ 1980

Is

$$\lim_{n \to \infty} \sqrt[n]{|Av_n(\sigma)|} = (|\sigma| - 1)^2$$

for all σ?
The Stanley-Wilf Conjecture

Stanley’s Question, \(\sim 1980\)

Is

\[
\lim_{n \to \infty} n \sqrt{|\text{Av}_n(\sigma)|} = (|\sigma| - 1)^2
\]

for all \(\sigma\)?

Wilf’s Next Question

Does there exist, for each \(\sigma\), a constant \(c(\sigma)\) with

\[
\lim_{n \to \infty} n \sqrt{|\text{Av}_n(\sigma)|} = c(\sigma)
\]
The Stanley-Wilf Conjecture

The Stanley-Wilf Upper Bound Conjecture

For every σ there is a constant $c(\sigma)$ such that

$$|Av_n(\sigma)| \leq c(\sigma)^n.$$
The Stanley-Wilf Conjecture

The Stanley-Wilf Upper Bound Conjecture
For every σ there is a constant $c(\sigma)$ such that

$$|Av_n(\sigma)| \leq c(\sigma)^n.$$

The Stanley-Wilf Limit Conjecture
For every σ there is a constant $c(\sigma)$ such that

$$\lim_{n \to \infty} \sqrt[n]{|Av_n(\sigma)|} = c(\sigma).$$
The Stanley-Wilf Conjecture

The Stanley-Wilf Upper Bound Conjecture
For every σ there is a constant $c(\sigma)$ such that

$$|Av_n(\sigma)| \leq c(\sigma)^n.$$

The Stanley-Wilf Limit Conjecture
For every σ there is a constant $c(\sigma)$ such that

$$\lim_{n \to \infty} n^{\frac{1}{\sqrt{n}}} |Av_n(\sigma)| = c(\sigma).$$

Limit \Rightarrow Upper Bound: Clear
The Stanley-Wilf Upper Bound Conjecture
For every σ there is a constant $c(\sigma)$ such that
\[|Av_n(\sigma)| \leq c(\sigma)^n. \]

The Stanley-Wilf Limit Conjecture
For every σ there is a constant $c(\sigma)$ such that
\[\lim_{n \to \infty} \sqrt{n |Av_n(\sigma)|} = c(\sigma). \]

Limit \Rightarrow Upper Bound: Clear

Upper Bound \Rightarrow Limit: Arratia 1999
Interlude: Other Notions of Containment

Generalized = Consecutive = Vincular

Example: 25314 contains 2413 but avoids 241.
Interlude: Other Notions of Containment

Generalized $=$ Consecutive $=$ Vincular

2413

$2 - 41 - 3$
Interlude: Other Notions of Containment

Generalized = Consecutive = Vincular

2413

2 − 41 − 3
Generalized = Consecutive = Vincular

Example

25314 contains 2413 but avoids 2413.
Bivincular
Bivincular

$\bar{2314}$
Bivincular

Example

315246 contains 2314 but avoids 2314.
Convention: Matrices use only entries 0 and 1.
The Füredi-Hajnal Conjecture

Convention: Matrices use only entries 0 and 1.

Definition

A matrix M contains a matrix C whenever M has a submatrix M_{sub} of C's dimensions such that M_{sub} has a 1 in every place C has a 1.
Convention: Matrices use only entries 0 and 1.

Definition

A matrix M contains a matrix C whenever M has a submatrix M_{sub} of C’s dimensions such that M_{sub} has a 1 in every place C has a 1.

Example

\[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{pmatrix}
\]
contains
\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]
The Füredi-Hajnal Conjecture

The Füredi-Hajnal Question, 1992

Given a matrix C, how many 1s can an $n \times n$ matrix M contain before it must contain C?

Theorem (Klazar, 2001)
Füredi-Hajnal \Rightarrow Stanley-Wilf
The Füredi-Hajnal Conjecture

The Füredi-Hajnal Question, 1992

Given a matrix C, how many 1s can an $n \times n$ matrix M contain before it must contain C?

The Füredi-Hajnal Conjecture

If C is a permutation matrix then there is a number $c(C)$ such that if an $n \times n$ matrix M has at least $c(C)n$ entries equal to 1, then M contains C.

Theorem (Klazar, 2001)

$\text{Füredi-Hajnal} \implies \text{Stanley-Wilf}$
The Füredi-Hajnal Question, 1992

Given a matrix C, how many 1s can an $n \times n$ matrix M contain before it must contain C?

The Füredi-Hajnal Conjecture

If C is a permutation matrix then there is a number $c(C)$ such that if an $n \times n$ matrix M has at least $c(C)n$ entries equal to 1, then M contains C.

Theorem (Klazar, 2001)

\[\text{Füredi-Hajnal} \Rightarrow \text{Stanley-Wilf} \]
The Marcus-Tardos Theorem

Adam Marcus starts his Fulbright in Hungary, working with Gábor Tardos.

Later in 2003, Marcus and Tardos prove the Füredi-Hajnal conjecture.

Weeks later, Marcus and Tardos learn about the Stanley-Wilf conjecture.
The Marcus-Tardos Theorem

Fall 2003 Adam Marcus starts his Fulbright in Hungary, working with Gábor Tardos
The Marcus-Tardos Theorem

Fall 2003 Adam Marcus starts his Fulbright in Hungary, working with Gábor Tardos

Late 2003 Marcus and Tardos prove the Füredi-Hajnal conjecture
The Marcus-Tardos Theorem

Fall 2003 Adam Marcus starts his Fulbright in Hungary, working with Gábor Tardos

Late 2003 Marcus and Tardos prove the Füredi-Hajnal conjecture

Weeks Later Marcus and Tardos learn about the Stanley-Wilf conjecture
How Long Did It Take to Prove the Stanley-Wilf Conjecture?

Richard Stanley before
How Long Did It Take to Prove the Stanley-Wilf Conjecture?

Richard Stanley before

Richard Stanley after
Definition

For each \(\sigma \),

\[
L(\sigma) := \lim_{n \to \infty} \sqrt[n]{|Av_n(\sigma)|}.
\]
Growth Rates

Definition

For each σ, $L(\sigma) := \lim_{n \to \infty} \sqrt[\sigma]{|Av_n(\sigma)|}$.

<table>
<thead>
<tr>
<th>σ</th>
<th>$L(\sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>4</td>
</tr>
<tr>
<td>132</td>
<td></td>
</tr>
<tr>
<td>1234</td>
<td></td>
</tr>
<tr>
<td>1243</td>
<td>9</td>
</tr>
<tr>
<td>2143</td>
<td></td>
</tr>
<tr>
<td>3214</td>
<td></td>
</tr>
<tr>
<td>1342</td>
<td></td>
</tr>
<tr>
<td>2413</td>
<td>8</td>
</tr>
<tr>
<td>1324</td>
<td></td>
</tr>
<tr>
<td>$12 \cdots k$</td>
<td>$(k - 1)^2$</td>
</tr>
</tbody>
</table>
Growth Rates

Definition

For each σ, $L(\sigma) := \lim_{n \to \infty} \sqrt{n} |A_{\nu_n}(\sigma)|$.

Theorem (Bevan, 2014)

$L(1324) \geq 9.81$

\begin{tabular}{|c|c|}
\hline
σ & $L(\sigma)$ \\
\hline
123 & 4 \\
132 & 9 \\
1234 & 8 \\
1243 & 8 \\
2143 & 8 \\
3214 & 8 \\
1342 & 8 \\
2413 & 8 \\
1324 & 8 \\
12 \cdots k & $(k - 1)^2$ \\
\hline
\end{tabular}
Definition
For each σ,

$$L(\sigma) := \lim_{n \to \infty} \sqrt[n]{|\text{Av}_n(\sigma)|}.$$

Theorem (Bevan, 2014)

$L(1324) \geq 9.81$

Theorem (Bóna, 2013)

$L(1324) \leq 13.738$

<table>
<thead>
<tr>
<th>σ</th>
<th>$L(\sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>4</td>
</tr>
<tr>
<td>132</td>
<td></td>
</tr>
<tr>
<td>1234</td>
<td>9</td>
</tr>
<tr>
<td>1243</td>
<td></td>
</tr>
<tr>
<td>2143</td>
<td></td>
</tr>
<tr>
<td>3214</td>
<td></td>
</tr>
<tr>
<td>1342</td>
<td>8</td>
</tr>
<tr>
<td>2413</td>
<td></td>
</tr>
<tr>
<td>1324</td>
<td>[9.81, 13.738]</td>
</tr>
<tr>
<td>$12 \cdots k$</td>
<td>$(k - 1)^2$</td>
</tr>
</tbody>
</table>
Conjecture (Claesson, Jelínek, Steingrímsson, 2012)

For any $\sigma \neq 12 \cdots k$, and any $j \geq 0$, the number of σ-avoiders with j inversions is a nondecreasing function of length.
Conjecture (Claesson, Jelínek, Steingrímsson, 2012)

For any $\sigma \neq 12 \cdots k$, and any $j \geq 0$, the number of σ-avoiders with j inversions is a nondecreasing function of length.

132-avoiders with exactly 2 inversions

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Conjecture (Claesson, Jelínek, Steingrímsson, 2012)

For any $\sigma \neq 12 \cdots k$, and any $j \geq 0$, the number of σ-avoiders with j inversions is a nondecreasing function of length.

231-avoiders with exactly 2 inversions

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
Conjecture (Claesson, Jelínek, Steingrímsson, 2012)

For any $\sigma \neq 12 \cdots k$, and any $j \geq 0$, the number of σ-avoiders with j inversions is a nondecreasing function of length.

Theorem (Claesson, Jelínek, Steingrímsson, 2012)

If the CJS conjecture holds for $\sigma = 1324$, then

$$L(1324) < 13.001954.$$
Conjecture (Claesson, Jelínek, Steingrímsson, 2012)

For any $\sigma \neq 12 \cdots k$, and any $j \geq 0$, the number of σ-avoiders with j inversions is a nondecreasing function of length.

Theorem (Claesson, Jelínek, Steingrímsson, 2012)

If the CJS conjecture holds for $\sigma = 1324$, then

$$L(1324) < e^{\pi \sqrt{2/3}} \approx 13.001954.$$
The Conway-Guttmann Estimate

Conjecture (Conway and Guttmann, 2014)

There are constants B, μ, μ_1, and g such that

$$|Av_n(1324)| \sim B \mu^n \sqrt{n} \mu_1 n^g.$$

$\mu = 1.60 \pm 0.01$

$\mu_1 = 0.0398 \pm 0.001$

$g = -1.1 \pm 0.2$

$B = 9.5 \pm 1.0$
Conjecture (Conway and Guttmann, 2014)

There are constants B, μ, μ_1, and g such that

$$|\text{Av}_n(1324)| \sim B \mu^n \mu_1^{\sqrt{n}} n^g.$$

$$\mu = 11.60 \pm 0.01$$
$$\mu_1 = 0.0398 \pm 0.001$$
$$g = -1.1 \pm 0.2$$
$$B = 9.5 \pm 1.0$$
The Dukes-Parton-West Permutation Patterns Game

- Fix a permutation σ.
- Players take turns placing stones on grid points.
The Dukes-Parton-West Permutation Patterns Game

- Fix a permutation σ.
- Players take turns placing stones on grid points.
- No two stones may be in the same row or column.
The Dukes-Parton-West Permutation Patterns Game

Fix a permutation σ.

Players take turns placing stones on grid points.

No two stones may be in the same row or column.

No occurrence of σ allowed.
The Dukes-Parton-West Permutation Patterns Game

- Fix a permutation σ.

- Players take turns placing stones on grid points.

- No two stones may be in the same row or column.

- No occurrence of σ allowed.

- Last player to move wins.
Would You Like to Play a Game?

\[\sigma = 21 \]

Is it better to play first or second?
What If Your Opponent Goes First, But Is Confused?

$\sigma = 21$

Where should you play?
A More Complicated Pattern

If \(\sigma = 321 \), should you play first or second?

<table>
<thead>
<tr>
<th>Board Size</th>
<th>Winning Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 \times 1</td>
<td></td>
</tr>
<tr>
<td>2 \times 2</td>
<td></td>
</tr>
<tr>
<td>3 \times 3</td>
<td></td>
</tr>
<tr>
<td>4 \times 4</td>
<td></td>
</tr>
<tr>
<td>5 \times 5</td>
<td></td>
</tr>
<tr>
<td>6 \times 6</td>
<td></td>
</tr>
<tr>
<td>7 \times 7</td>
<td></td>
</tr>
<tr>
<td>8 \times 8</td>
<td></td>
</tr>
</tbody>
</table>

Open Problem

Find the general pattern.

Eric S. Egge (Carleton College)
A More Complicated Pattern

If $\sigma = 321$, should you play first or second?

<table>
<thead>
<tr>
<th>Board Size</th>
<th>Winning Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1</td>
<td>first</td>
</tr>
<tr>
<td>2×2</td>
<td>second</td>
</tr>
<tr>
<td>3×3</td>
<td></td>
</tr>
<tr>
<td>4×4</td>
<td></td>
</tr>
<tr>
<td>5×5</td>
<td></td>
</tr>
<tr>
<td>6×6</td>
<td></td>
</tr>
<tr>
<td>7×7</td>
<td></td>
</tr>
<tr>
<td>8×8</td>
<td></td>
</tr>
</tbody>
</table>

Open Problem

Find the general pattern.

Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words September 20, 2014 31 / 34
If $\sigma = 321$, should you play first or second?

<table>
<thead>
<tr>
<th>Board Size</th>
<th>Winning Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1</td>
<td>first</td>
</tr>
<tr>
<td>2×2</td>
<td>second</td>
</tr>
<tr>
<td>3×3</td>
<td>first</td>
</tr>
<tr>
<td>4×4</td>
<td>first</td>
</tr>
<tr>
<td>5×5</td>
<td>first</td>
</tr>
<tr>
<td>6×6</td>
<td>first</td>
</tr>
<tr>
<td>7×7</td>
<td>first</td>
</tr>
<tr>
<td>8×8</td>
<td>first</td>
</tr>
</tbody>
</table>
A More Complicated Pattern

If $\sigma = 321$, should you play first or second?

<table>
<thead>
<tr>
<th>Board Size</th>
<th>Winning Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 \times 1</td>
<td>first</td>
</tr>
<tr>
<td>2 \times 2</td>
<td>second</td>
</tr>
<tr>
<td>3 \times 3</td>
<td>first</td>
</tr>
<tr>
<td>4 \times 4</td>
<td>second</td>
</tr>
<tr>
<td>5 \times 5</td>
<td>first</td>
</tr>
<tr>
<td>6 \times 6</td>
<td>second</td>
</tr>
<tr>
<td>7 \times 7</td>
<td></td>
</tr>
<tr>
<td>8 \times 8</td>
<td></td>
</tr>
</tbody>
</table>

Open Problem
Find the general pattern.

Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words September 20, 2014 31 / 34
If $\sigma = 321$, should you play first or second?

<table>
<thead>
<tr>
<th>Board Size</th>
<th>Winning Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1</td>
<td>first</td>
</tr>
<tr>
<td>2×2</td>
<td>second</td>
</tr>
<tr>
<td>3×3</td>
<td>first</td>
</tr>
<tr>
<td>4×4</td>
<td>second</td>
</tr>
<tr>
<td>5×5</td>
<td>first</td>
</tr>
<tr>
<td>6×6</td>
<td>second</td>
</tr>
<tr>
<td>7×7</td>
<td>first</td>
</tr>
<tr>
<td>8×8</td>
<td>first!!</td>
</tr>
</tbody>
</table>
A More Complicated Pattern

If $\sigma = 321$, should you play first or second?

<table>
<thead>
<tr>
<th>Board Size</th>
<th>Winning Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1</td>
<td>first</td>
</tr>
<tr>
<td>2×2</td>
<td>second</td>
</tr>
<tr>
<td>3×3</td>
<td>first</td>
</tr>
<tr>
<td>4×4</td>
<td>second</td>
</tr>
<tr>
<td>5×5</td>
<td>first</td>
</tr>
<tr>
<td>6×6</td>
<td>second</td>
</tr>
<tr>
<td>7×7</td>
<td>first</td>
</tr>
<tr>
<td>8×8</td>
<td>first!!!</td>
</tr>
</tbody>
</table>

Open Problem
Find the general pattern.
Where to Learn More

COMBINATORICS OF PERMUTATIONS
Second Edition
Miklós Bóna

Patterns in Permutations and Words
Sergey Kitaev
The End

Thank You!