Pattern-Avoiding Permutations and Lattice Paths:
Old Connections and New Links

Eric S. Egge

Carleton College

August 3, 2012
Definition

\pi, \sigma \text{ are permutations.}

\pi \text{ avoids } \sigma \text{ whenever } \pi \text{ has no subsequence with same length and relative order as } \sigma.

Example

6152347 avoids 231 but not 213.
Definition

\(\pi, \sigma\) are permutations.

\(\pi\) avoids \(\sigma\) whenever \(\pi\) has no subsequence with same length and relative order as \(\sigma\).

Example

6152347 avoids 231 but not 213.
Definition

\(\pi, \sigma \) are permutations.
\(\pi \) avoids \(\sigma \) whenever \(\pi \) has no subsequence with same length and relative order as \(\sigma \).

Example

6152347 avoids 231 but not 213.
Definition

\(\pi, \sigma \) are permutations.

\(\pi \) avoids \(\sigma \) whenever \(\pi \) has no subsequence with same length and relative order as \(\sigma \).

Example

6152347 avoids 231 but not 213.

The diagram of 6152347.
Definition

\(\pi, \sigma \) are permutations.

\(\pi \) avoids \(\sigma \) whenever \(\pi \) has no subsequence with same length and relative order as \(\sigma \).

Example

6152347 avoids 231 but not 213.

Notation

\(Av(\sigma) := \text{set of all permutations which avoid } \sigma. \)

\(Av_n(\sigma) = Av(\sigma) \cap S_n \)
Counting Pattern-Avoiding Permutations

\[|\text{Av}_n(132)| = |\text{Av}_n(213)| = |\text{Av}_n(231)| = |\text{Av}_n(312)| \]

\[|\text{Av}_n(321)| = |\text{Av}_n(123)| \]
Counting Pattern-Avoiding Permutations

\[|\text{Av}_n(132)| = |\text{Av}_n(213)| = |\text{Av}_n(231)| = |\text{Av}_n(312)| \]

\[|\text{Av}_n(321)| = |\text{Av}_n(123)| \]

Idea

Rotation of diagrams gives bijections among these sets.
Counting Pattern-Avoiding Permutations

\[|Av_n(132)| = |Av_n(213)| = |Av_n(231)| = |Av_n(312)| \]

\[|Av_n(321)| = |Av_n(123)| \]

Idea

Rotation of diagrams gives bijections among these sets.

Theorem

\[|Av_n(231)| = |Av_n(321)| = C_n = \frac{1}{n+1} \binom{2n}{n} \]
Definition

A *Catalan path* (of length n) is a sequence of n North $(0,1)$ steps and n East $(1,0)$ steps which never passes below the line $y = x$.

Theorem

The number of Catalan paths of length n is $C_n = \frac{1}{n+1} \binom{2n}{n}$.
Definition

A Catalan path (of length \(n \)) is a sequence of \(n \) North (0, 1) steps and \(n \) East (1, 0) steps which never passes below the line \(y = x \).
Catalan Paths

Definition

A Catalan path (of length n) is a sequence of n North $(0, 1)$ steps and n East $(1, 0)$ steps which never passes below the line $y = x$.

Theorem

The number of Catalan paths of length n is

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$
Recursive Structures

Permutations

12438756 avoids 231.
Permutations

12438756 avoids 231.
Permutations

$\pi_1 \bigoplus \pi_2

\text{Idea}

F(\pi_1 \bigoplus \pi_2) = NF(\pi_2) - EF(\pi_1)$
Recursive Structures

Permutations

\[\pi_1 \oplus \pi_2 \]

Paths

Idea

\[F(\pi_1 \oplus \pi_2) = N F(\pi_2) E F(\pi_1) \]

Eric S. Egge (Carleton College)
Recursive Structures

Permutations

\[\pi_1 \oplus \pi_2 \]

Paths

\[F(\pi_1 \oplus \pi_2) = N F(\pi_2) E F(\pi_1) \]

Eric S. Egge (Carleton College)

Permutations and Lattice Paths

August 3, 2012
Recursive Structures

Permutations

\[\pi_1 \oplus \pi_2 \]

Paths

\[\pi_1 \oplus \pi_2 \]

Idea

\[F(\pi_1 \oplus \pi_2) = N F(\pi_2) E F(\pi_1) \]
Recursive Structures

Permutations

Paths

\[
\pi_1 \oplus \pi_2
\]

\[
\pi_1 \oplus \pi_2
\]

Idea

\[
F(\pi_1 \oplus \pi_2) = NF(\pi_2) E F(\pi_1)
\]
Definition

An inversion in a permutation is an occurrence of the pattern 21.
Definition

An *inversion* in a permutation is an occurrence of the pattern 21.

Theorem

\[
\text{inv}(\pi_1 \oplus \pi_2) = \text{inv}(\pi_1) + \text{inv}(\pi_2) + \text{length}(\pi_2)
\]
Bonus Information: Inversions

Definition
An inversion in a permutation is an occurrence of the pattern 21.

Theorem
\[\text{inv}(\pi_1 \oplus \pi_2) = \text{inv}(\pi_1) + \text{inv}(\pi_2) + \text{length}(\pi_2) \]
Definition

An *inversion* in a permutation is an occurrence of the pattern 21.

Theorem

\[
\text{inv}(\pi_1 \oplus \pi_2) = \text{inv}(\pi_1) + \text{inv}(\pi_2) + \text{length}(\pi_2)
\]
Definition

An *inversion* in a permutation is an occurrence of the pattern 21.

Theorem

\[\text{inv}(\pi_1 \oplus \pi_2) = \text{inv}(\pi_1) + \text{inv}(\pi_2) + \text{length}(\pi_2) \]
Definition

An *inversion* in a permutation is an occurrence of the pattern 21.

Theorem

\[\text{inv}(\pi_1 \oplus \pi_2) = \text{inv}(\pi_1) + \text{inv}(\pi_2) + \text{length}(\pi_2) \]
Definition

An *inversion* in a permutation is an occurrence of the pattern 21.

Theorem

\[
\text{inv}(\pi_1 \oplus \pi_2) = \text{inv}(\pi_1) + \text{inv}(\pi_2) + \text{length}(\pi_2)
\]
Bonus Information: Inversions

Definition
An *inversion* in a permutation is an occurrence of the pattern 21.

Theorem

\[
\text{inv}(\pi_1 \oplus \pi_2) = \text{inv}(\pi_1) + \text{inv}(\pi_2) + \text{length}(\pi_2)
\]
Definition

The *area* of a lattice path π is the number of full squares below π and above $y = x$.
Definition

The *area* of a lattice path π is the number of full squares below π and above $y = x$.

Theorem

$$\text{area}(\pi_1 \oplus \pi_2) = \text{area}(\pi_1) + \text{area}(\pi_2) + \text{length}(\pi_2)$$
Definition

The area of a lattice path π is the number of full squares below π and above $y = x$.

Theorem

$$\text{area}(\pi_1 \oplus \pi_2) = \text{area}(\pi_1) + \text{area}(\pi_2) + \text{length}(\pi_2)$$

Theorem

$$\text{inv}(\pi) = \text{area}(F(\pi))$$
Definition

For any permutation π and number k, let $k(\pi)$ be the number of decreasing subsequences of length k in π.
Definition
For any permutation π and number k, let $k(\pi)$ be the number of decreasing subsequences of length k in π.

Definition
The *height* $ht(s)$ of an East step s in a Catalan path π is the number of area squares below it. The *kth area* of π is $area_k(\pi) = \sum_{s \in \pi} \binom{ht(s)}{k-1}$.
Definition

For any permutation \(\pi \) and number \(k \), let \(k(\pi) \) be the number of decreasing subsequences of length \(k \) in \(\pi \).

Definition

The \textit{height} \(\text{ht}(s) \) of an East step \(s \) in a Catalan path \(\pi \) is the number of area squares below it. The \textit{kth area} of \(\pi \) is \(\text{area}_k(\pi) = \sum_{s \in \pi} \binom{\text{ht}(s)}{k-1} \).

Theorem

\[k(\pi) = \text{area}_k(F(\pi)) \]

and

\[\sum_{\pi \in \text{Av}(231)} x_1^{1(\pi)} x_2^{2(\pi)} x_3^{3(\pi)} \cdots = \frac{1}{1 - \frac{x_1}{1 - \frac{x_1 x_2}{1 - \frac{x_1 x_2 x_3}{\cdots}}}}. \]
\[|\text{Av}_n(321)| = C_n \]

41623785 avoids 321.
Theorem
This process produces a Catalan path for any permutation.

Idea
If the ith East step is below $y = x$ then the first i buildings are all height $i - 1$ or less.

Theorem
The restriction to $\text{Av}_n(321)$ is a bijection.

Idea
To avoid 321, we must have increasing heights in the canyons.

41623785 avoids 321.
\[|Av_n(321)| = C_n \]

Theorem
This process produces a Catalan path for any permutation.

Idea
If the \(i \)th East step is below \(y = x \) then the first \(i \) buildings are all height \(i - 1 \) or less.

Theorem
The restriction to \(Av_n(321) \) is a bijection.

Idea
To avoid 321, we must have increasing heights in the canyons.

41623785 avoids 321.
Theorem

This process produces a Catalan path for any permutation.

41623785 avoids 321.
Theorem

This process produces a Catalan path for any permutation.

Idea

If the ith East step is below $y = x$ then the first i buildings are all height $i - 1$ or less.
$|\text{Av}_n(321)| = C_n$

Theorem

This process produces a Catalan path for any permutation.

Idea

If the ith East step is below $y = x$ then the first i buildings are all height $i - 1$ or less.

Theorem

The restriction to $\text{Av}(321)$ is a bijection.

41623785 avoids 321.
Theorem

This process produces a Catalan path for any permutation.

Idea

If the ith East step is below $y = x$ then the first i buildings are all height $i - 1$ or less.

Theorem

The restriction to $\text{Av}(321)$ is a bijection.

Idea

To avoid 321, we must have increasing heights in the canyons.
The Schröder Case

A Schröder Path
The Schröder Case

A Schröder Path

\[r_n = \sum_{d=0}^{n} \binom{2n-d}{d} C_{n-d} \]
The Schröder Case

A Schröder Path

\[r_n = \sum_{d=0}^{n} \binom{2n-d}{d} C_{n-d} \]

Theorem

\[|Av_n(3421, 3412)| = r_{n-1} \]
The Schröder Case

Theorem

\[r_n = \sum_{d=0}^{n} \binom{2n - d}{d} C_{n-d} \]

Theorem

\[|\text{Av}_n(3421, 3412)| = r_{n-1} \]

Theorem

\[k(\pi) = \text{area}_k(F(\pi)) \]

and

\[\sum_{\pi \in \text{Av}(3421, 3412)} x_1^{1(\pi)} x_2^{2(\pi)} x_3^{3(\pi)} \cdots = 1 + \frac{x_1}{1 - x_1 - \frac{x_1 x_2}{1 - x_1 x_2 - \frac{x_1 x_2 x_3}{\cdots}}} \]
Conjecture

\[|\text{Av}_n(2413, 2143, 415263)| = r_{n-1} \]
Thank You!