A Chromatic Symmetric Function for Signed Graphs

Eric S. Egge

Carleton College

March 5, 2016
Our Graphs

G is a graph with no loops, but possibly with multiple edges.
Our Graphs

G is a graph with no loops, but possibly with multiple edges.

Interesting
Our Graphs

G is a graph with no loops, but possibly with multiple edges.

Interesting

Not Interesting
A **proper coloring** of a graph G is an assignment of colors to the vertices of G such that adjacent vertices have different colors.
A proper coloring of a graph G is an assignment of colors to the vertices of G such that adjacent vertices have different colors.
A **proper coloring** of a graph G is an assignment of colors to the vertices of G such that adjacent vertices have different colors.

Proper Coloring

Not a Proper Coloring
Our “colors” are the variables x_1, x_2, x_3, \ldots.
The Chromatic Symmetric Function of a Graph

Our “colors” are the variables x_1, x_2, x_3, \ldots.

For any proper coloring C of G, $x(C)$ is the product of the colors.
The Chromatic Symmetric Function of a Graph

Our “colors” are the variables x_1, x_2, x_3, \ldots.

For any proper coloring C of G, $x(C)$ is the product of the colors.

Definition (Stanley)
The chromatic symmetric function of G is

$$X_G = \sum_{C \text{ proper coloring of } G} x(C).$$
Signed Graphs

Definition

A signed graph is a graph in which every edge is given a sign, either + or -.
Signed Graphs

Definition
A signed graph is a graph in which every edge is given a sign, either $+$ or $-$.
In a signed graph with sign function σ, assign a sign $S(v)$ to each vertex v.
Switching

In a signed graph with sign function σ, assign a sign $S(v)$ to each vertex v.

If e connects v_1 and v_2 then we get a new sign function τ on edges

$$\tau(e) = S(v_1)\sigma(e)S(v_2)$$
Switching

In a signed graph with sign function σ, assign a sign $S(v)$ to each vertex v.

If e connects v_1 and v_2 then we get a new sign function τ on edges

$$\tau(e) = S(v_1)\sigma(e)S(v_2)$$
Switching

In a signed graph with sign function σ, assign a sign $S(v)$ to each vertex v.

If e connects v_1 and v_2 then we get a new sign function τ on edges e

$$\tau(e) = S(v_1)\sigma(e)S(v_2)$$
Switching

In a signed graph with sign function σ, assign a sign $S(v)$ to each vertex v.

If e connects v_1 and v_2 then we get a new sign function τ on edges

$$\tau(e) = S(v_1)\sigma(e)S(v_2)$$
In a signed graph with sign function σ, assign a sign $S(v)$ to each vertex v.

If e connects v_1 and v_2 then we get a new sign function τ on edges

$$\tau(e) = S(v_1)\sigma(e)S(v_2)$$
Proper Colorings of Signed Graphs

Our “colors” are the variables

\[x_1, x_{-1}, x_2, x_{-2}, x_3, x_{-3} \ldots \]
Proper Colorings of Signed Graphs

Our “colors” are the variables

\[x_1, x_{-1}, x_2, x_{-2}, x_3, x_{-3} \ldots \]

A proper coloring of a signed graph is a coloring in which

\[x_a \neq x_{\sigma b} \]

\textbf{Fact}

If \(G \) and \(H \) are related by switching then there is a natural bijection between their sets of proper colorings.
Proper Colorings of Signed Graphs

A proper coloring of a signed graph is a coloring in which

\[\chi_a \sim_{\sigma} \chi_b \]

implies

\[\chi_a \neq \chi_{\sigma b} \]

Fact

If \(G \) and \(H \) are related by switching then there is a natural bijection between their sets of proper colorings.
The Chromatic Symmetric Function of a Signed Graph

Definition
For a signed graph G, the chromatic symmetric function of G is

$$Y_G = \sum_{C \text{ proper coloring of } G} x(C).$$
The Chromatic Symmetric Function of a Signed Graph

Definition
For a signed graph G, the chromatic symmetric function of G is

$$Y_G = \sum_{C \text{ proper coloring of } G} x(C).$$

Observation
Y_G is invariant under the natural action of the hyperoctahedral group, which is the set of permutations π of $\pm 1, \pm 2, \ldots$ such that

$$\pi(-j) = -\pi(j)$$

for all j.
The Chromatic Symmetric Function of a Signed Graph

Definition
For a signed graph G, the chromatic symmetric function of G is

$$Y_G = \sum_{C \text{ proper coloring of } G} x(C).$$

Observation

$$Y_G \in BSym$$
Marked Ferrers Diagrams

Goal: a basis for $BSym$.

Definition

A marked Ferrers diagram is a Ferrers diagram in which some (or no) boxes contain dots, such that

▶ the rows of dotted boxes are left-justified and
▶ for each k, the dotted boxes in the rows of length k form a Ferrers diagram.

$|\lambda| =$ total number of boxes and dots in λ.
Marked Ferrers Diagrams

Goal: a basis for $BSym$.

Definition
A marked Ferrers diagram is a Ferrers diagram in which some (or no) boxes contain dots, such that

1. The rows of dotted boxes are left-justified.
2. For each k, the dotted boxes in the rows of length k form a Ferrers diagram.

λ := total number of boxes and dots in λ
Marked Ferrers Diagrams

Goal: a basis for $BSym$.

Definition
A marked Ferrers diagram is a Ferrers diagram in which some (or no) boxes contain dots, such that
- the rows of dotted boxes are left-justified and
Marked Ferrers Diagrams

Goal: a basis for $BSym$.

Definition

A marked Ferrers diagram is a Ferrers diagram in which some (or no) boxes contain dots, such that

- the rows of dotted boxes are left-justified and
- for each k, the dotted boxes in the rows of length k form a Ferrers diagram.
Marked Ferrers Diagrams

Goal: a basis for $BSym$.

Definition

A marked Ferrers diagram is a Ferrers diagram in which some (or no) boxes contain dots, such that

- the rows of dotted boxes are left-justified and
- for each k, the dotted boxes in the rows of length k form a Ferrers diagram.

$|\lambda| :=$ total number of boxes and dots in λ
Marked Ferrers Diagrams and Their Monomials

For each marked Ferrers diagram there is a monomial.
Marked Ferrers Diagrams and Their Monomials

For each marked Ferrers diagram there is a monomial.
Marked Ferrers Diagrams and Their Monomials

For each marked Ferrers diagram there is a monomial.

\[x_1 x_{-1} x_2 x_3 x_4 x_5 \]

\[x_6^3 x_2^3 x_4^5 x_{-4}^4 \cdots \]

\[x_1^7 x_{-1}^2 \]
A \textit{BSym} Basis

\[BSym_n := \text{space of homogeneous invariant series of total degree } n \]
A $BSym$ Basis

$BSym_n :=$ space of homogeneous invariant series of total degree n

For any marked Ferrers diagram λ, m_λ is the sum of the distinct images of λ’s monomial.
A BSym Basis

$\text{BSym}_n := \text{space of homogeneous invariant series of total degree } n$

For any marked Ferrers diagram λ, m_λ is the sum of the distinct images of λ’s monomial.

Theorem

$\{m_\lambda \mid |\lambda| = n\}$ is a basis for BSym_n.
\[\dim BSym_n \]

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dim BSym_n$</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>18</td>
<td>35</td>
<td>57</td>
<td>102</td>
</tr>
</tbody>
</table>
dim $B\text{Sym}_n$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>dim $B\text{Sym}_n$</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>18</td>
<td>35</td>
<td>57</td>
<td>102</td>
</tr>
</tbody>
</table>

Theorem

$$\sum_{n=0}^{\infty} \dim(B\text{Sym}_n)x^n = \prod_{j=1}^{\infty} \left(\frac{1}{1 - x^j} \right)^{\lfloor j/2 \rfloor + 1}$$
The Power Sum Basis

\[p_\lambda := m_\lambda \text{ for any } \lambda \text{ with just one row} \]
The Power Sum Basis

\[p_\lambda := m_\lambda \text{ for any } \lambda \text{ with just one row} \]

\[p_{\lambda_1, \ldots, \lambda_k} := p_{\lambda_1} \cdots p_{\lambda_k} \]

for any list \(\lambda_1, \ldots, \lambda_k \) of row shapes
The Power Sum Basis

\[p_\lambda := m_\lambda \text{ for any } \lambda \text{ with just one row} \]

\[p_{\lambda_1, \ldots, \lambda_k} := p_{\lambda_1} \cdots p_{\lambda_k} \]

for any list \(\lambda_1, \ldots, \lambda_k \) of row shapes

Theorem

If we linearly order the set of row shapes then

\[\{ p_{\lambda_1, \ldots, \lambda_k} \mid \sum_j |\lambda_j| = n \text{ and } \lambda_1 \geq \cdots \geq \lambda_k \} \]

is a basis for \(BSym_n \).
The Elementary Basis?

\[e_\lambda := m_\lambda \text{ for any } \lambda \text{ with just one column} \]

\[e_{\lambda_1, \ldots, \lambda_k} := e_{\lambda_1} \cdots e_{\lambda_k} \]

for any list \(\lambda_1, \ldots, \lambda_k \) of column shapes

Conjecture

If we linearly order the set of column shapes then

\[\{ e_{\lambda_1, \ldots, \lambda_k} \mid \sum_j |\lambda_j| = n \text{ and } \lambda_1 \geq \cdots \geq \lambda_k \} \]

is a basis for \(BSym_n \).
Basic Results: The Chromatic Polynomial

Definition
The chromatic polynomial \(\chi_G(n) \) of a signed graph \(G \) is the number of proper colorings of \(G \) with \(x_1, x_{-1}, \ldots, x_n, x_{-n} \).
Basic Results: The Chromatic Polynomial

Definition
The chromatic polynomial $\chi_G(n)$ of a signed graph G is the number of proper colorings of G with $x_1, x_{-1}, \ldots, x_n, x_{-n}$.

Theorem
If G is a signed graph then

$$Y_G(1, 1, \ldots, 1, 0, 0, \ldots) = \chi_G(n)$$
Basic Results

Theorem

If a signed graph G is a disjoint union of signed graphs G_1 and G_2 then

$$Y_G = Y_{G_1} \cdot Y_{G_2}.$$
Basic Results

Theorem
If a signed graph G is a disjoint union of signed graphs G_1 and G_2 then

$$Y_G = Y_{G_1} \cdot Y_{G_2}.$$

Theorem
If all of the edges in a signed graph G are positive then

$$Y_G = X_G(x_1, x_{-1}, x_2, x_{-2}, \ldots).$$
Switching Does Not Preserve Y_G

$m\bullet + 2m\square$

$m\square + 2m\square$
The Power Basis Expansion

Definition
For any connected, signed graph G, the type $\lambda(G)$ of G is the row shape consisting of k boxes and m dots, where G can be colored with $k \times 1$s and $m \times -1$s so that every edge is improper. If G is not connected then its type is the sequence of types of its connected components.
The Power Basis Expansion

Definition
For any connected, signed graph G, the type $\lambda(G)$ of G is the row shape consisting of k boxes and m dots, where G can be colored with $k \times 1$ and $m \times -1$ so that every edge is improper. If G is not connected then its type is the sequence of types of its connected components.
The Power Basis Expansion

Definition
For any connected, signed graph G, the type $\lambda(G)$ of G is the row shape consisting of k boxes and m dots, where G can be colored with $k \times_1$s and $m \times_{-1}$s so that every edge is improper. If G is not connected then its type is the sequence of types of its connected components.
The Power Basis Expansion

Definition
For any connected, signed graph G, the type $\lambda(G)$ of G is the row shape consisting of k boxes and m dots, where G can be colored with $k \times_1$s and $m \times_{-1}$s so that every edge is improper. If G is not connected then its type is the sequence of types of its connected components.
The Power Basis Expansion

Definition
For any connected, signed graph G, the type $\lambda(G)$ of G is the row shape consisting of k boxes and m dots, where G can be colored with k x_1s and m x_{-1}s so that every edge is improper. If G is not connected then its type is the sequence of types of its connected components.
The Power Basis Expansion

Definition
For any connected, signed graph G, the type $\lambda(G)$ of G is the row shape consisting of k boxes and m dots, where G can be colored with $k \times 1$s and $m \times -1$s so that every edge is improper. If G is not connected then its type is the sequence of types of its connected components.
The Power Basis Expansion

Definition
For any connected, signed graph G, the type $\lambda(G)$ of G is the row shape consisting of k boxes and m dots, where G can be colored with $k \times 1$s and $m \times -1$s so that every edge is improper. If G is not connected then its type is the sequence of types of its connected components.

\[
\lambda(G) = \begin{array}{|c|c|}
\hline
\bullet & \bullet \\
\hline
\end{array}
\]
The Power Basis Expansion

Definition
A connected signed graph G is 2-faced whenever there are two colorings of its vertices with x_1 and x_{-1} which are improper along every edge, and which have at least as many x_1s as x_{-1}s.
The Power Basis Expansion

Definition
A connected signed graph G is **2-faced** whenever there are two colorings of its vertices with x_1 and x_{-1} which are improper along every edge, and which have at least as many x_1s as x_{-1}s.

Example
Every path with an even number of vertices is 2-faced.
The Power Basis Expansion

Definition
A connected signed graph G is 2-faced whenever there are two colorings of its vertices with x_1 and x_{-1} which are improper along every edge, and which have at least as many x_1s as x_{-1}s.

Example
Every path with an even number of vertices is 2-faced.

Example
Every cycle with an even number of vertices whose product of signs is positive is 2-faced.
The Power Basis Expansion

Definition
A connected signed graph G is 2-faced whenever there are two colorings of its vertices with x_1 and x_{-1} which are improper along every edge, and which have at least as many x_1s as x_{-1}s.

Theorem
For any signed graph G with edge set E,

$$Y_G = \sum_{S \subseteq E} (-1)^{|S|} 2^{tf(S)} p_{\lambda(S)},$$

where $tf(S)$ is the number of 2-faces of S and $p_{\lambda(S)} = 0$ if S has no type.
The Last Slide

Thank you!