Linear Recurrences and the Pfaffian Transform

Eric S. Egge
(joint work with T. Austin, H. Bantilan, I. Jonas, and P. Kory)

Carleton College

August 2, 2012
Functions on Sequences

The Binomial Transform

\[
B(a_j)_n = \sum_{j=0}^{n} \binom{n}{j} a_j
\]
Functions on Sequences

The Binomial Transform

\[B(\{a_j\})_n = \sum_{j=0}^{n} \binom{n}{j} a_j \]

The Hankel Transform

\[H(\{a_j\})_n = \det \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & \cdots & \cdots & a_{n+1} \\ a_2 & \cdots & \cdots & \cdots & a_{n+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix} \]
Functions on Sequences

The Binomial Transform

\[B(\{a_j\})_n = \sum_{j=0}^{n} \binom{n}{j} a_j \]

The Hankel Transform

\[H(\{a_j\})_n = \det \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & \cdots & \cdots & a_{n+1} \\ a_2 & \cdots & \cdots & \cdots & a_{n+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n+1} & a_{n+2} & \cdots & a_{2n} \end{pmatrix} \]

Theorem (Layman, 2001)

\[H(B(\{a_j\})) = H(\{a_j\}) \]
The Pfaffian of a Skew-Symmetric Matrix

\[
\begin{vmatrix}
 a & b \\
 c & d \\
\end{vmatrix} = ad - bc
\]
The Pfaffian of a Skew-Symmetric Matrix

\[
\begin{vmatrix}
 a & b \\
 c & d
\end{vmatrix} = ad - bc
\]
The Pfaffian of a Skew-Symmetric Matrix

\[
\text{det} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc
\]
The Pfaffian of a Skew-Symmetric Matrix

\[\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \]
The Pfaffian of a Skew-Symmetric Matrix

\[
\text{det} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc
\]

\[
\text{det} A = \sum_{\pi \in \text{perm} K_{n,n}} (-1)^{\text{cross}(\pi)} \prod_{i,j \in \pi} A_{ij}
\]
The Pfaffian of a Skew-Symmetric Matrix

\[
\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc
\]

\[\det A = \sum_{\pi \in \text{pm} \ K_{n,n}} (-1)^{\text{cross}(\pi)} \prod_{i,j \in \pi} A_{ij}\]

\[\Pf A = \sum_{\pi \in \text{pm} \ K_{2n}} (-1)^{\text{cross}(\pi)} \prod_{i,j \in \pi} A_{ij}\]
The Pfaffian of a Skew-Symmetric Matrix

\[
\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc
\]

\[
\det A = \sum_{\pi \text{ pm } K_{n,n}} (-1)^{\text{cross}(\pi)} \prod_{i,j \in \pi} A_{ij}
\]

\[
Pf A = \sum_{\pi \text{ pm } K_{2n}} (-1)^{\text{cross}(\pi)} \prod_{i,j \in \pi} A_{ij}
\]

Fact: \(\det(A) = (\text{Pf}(A))^2 \)
The Pfaffian Transform

\[
Pf(\{a_j\})_n = Pf \begin{pmatrix}
 0 & a_1 & a_2 & a_3 & \cdots & a_{2n-1} \\
 -a_1 & 0 & a_1 & a_2 & \cdots & a_{2n-2} \\
 -a_2 & -a_1 & 0 & a_1 & \cdots & a_{2n-3} \\
 -a_3 & -a_2 & -a_1 & 0 & \cdots & a_{2n-4} \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 -a_{2n-1} & -a_{2n-2} & -a_{2n-3} & -a_{2n-4} & \cdots & 0
\end{pmatrix}
\]
Pfaffian Transform Examples

<table>
<thead>
<tr>
<th>({a_j})</th>
<th>(\text{Pf}({a_j}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 4, \ldots, 2^{n-1}, \ldots</td>
<td>1, 1, 1, \ldots</td>
</tr>
<tr>
<td>1, 3, 9, \ldots, 3^{n-1}, \ldots</td>
<td>1, 1, 1, \ldots</td>
</tr>
<tr>
<td>1, 1, 2, 3, \ldots, (F_n), \ldots</td>
<td>1, 2, 4, \ldots, 2^{n-1}, \ldots</td>
</tr>
<tr>
<td>1, 1, 3, 5, 11, 21, \ldots, (J_n), \ldots</td>
<td>1, 3, 9, \ldots, 3^{n-1}, \ldots</td>
</tr>
<tr>
<td>1, 1, 2, 4, 7, 13, \ldots, (T_n), \ldots</td>
<td>1, 2, 3, \ldots, n, \ldots</td>
</tr>
</tbody>
</table>
Pfaffian Transform Examples

<table>
<thead>
<tr>
<th>{a_j}</th>
<th>\text{Pf}({a_j})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 4, \ldots, 2^{n-1}, \ldots</td>
<td>1, 1, 1, \ldots</td>
</tr>
<tr>
<td>1, 3, 9, \ldots, 3^{n-1}, \ldots</td>
<td>1, 1, 1, \ldots</td>
</tr>
<tr>
<td>1, 1, 2, 3, \ldots, F_n, \ldots</td>
<td>1, 2, 4, \ldots, 2^{n-1}, \ldots</td>
</tr>
<tr>
<td>1, 1, 3, 5, 11, 21, \ldots, J_n, \ldots</td>
<td>1, 3, 9, \ldots, 3^{n-1}, \ldots</td>
</tr>
<tr>
<td>1, 1, 2, 4, 7, 13, \ldots, T_n, \ldots</td>
<td>1, 2, 3, \ldots, n, \ldots</td>
</tr>
</tbody>
</table>

Conjecture

If \{a_j\} (eventually) satisfies a linear homogeneous recurrence relation with constants coefficients, then so does \text{Pf}(\{a_j\}).
Theorem

If A is skew-symmetric and we obtain B from A by
1. adding a multiple of row i to row j and
2. adding the same multiple of column i to column j
then B is skew-symmetric and $\text{Pf}(A) = \text{Pf}(B)$.
Theorem

If A is skew-symmetric and we obtain B from A by
1. adding a multiple of row i to row j and
2. adding the same multiple of column i to column j
then B is skew-symmetric and $\text{Pf}(A) = \text{Pf}(B)$.

\[
\text{Pf}(\{ F_j \})_3 = \text{Pf} \begin{pmatrix}
0 & 1 & 1 & 2 & 3 & 5 \\
-1 & 0 & 1 & 1 & 2 & 3 \\
-1 & -1 & 0 & 1 & 1 & 2 \\
-2 & -1 & -1 & 0 & 1 & 1 \\
-3 & -2 & -1 & -1 & 0 & 1 \\
-5 & -3 & -2 & -1 & -1 & 0 \\
\end{pmatrix}
\]
Theorem

If A is skew-symmetric and we obtain B from A by
1. adding a multiple of row i to row j and
2. adding the same multiple of column i to column j
then B is skew-symmetric and $\text{Pf}(A) = \text{Pf}(B)$.

\[
\text{Pf}(\{F_j\})_3 = \text{Pf}
\begin{pmatrix}
0 & 1 & 1 & 2 & 3 & 0 \\
-1 & 0 & 1 & 1 & 2 & 0 \\
-1 & -1 & 0 & 1 & 1 & 0 \\
-2 & -1 & -1 & 0 & 1 & 0 \\
-3 & -2 & -1 & -1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & -2 \\
\end{pmatrix}
\]
Theorem

If A is skew-symmetric and we obtain B from A by

1. adding a multiple of row i to row j and
2. adding the same multiple of column i to column j

then B is skew-symmetric and $\text{Pf}(A) = \text{Pf}(B)$.

$$\text{Pf}(\{F_j\}_3) = \text{Pf} \begin{pmatrix} 0 & 1 & 1 & 2 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 1 & 0 & 0 \\ -2 & -1 & -1 & 0 & 2 & 0 \\ 0 & 0 & 0 & -2 & 0 & 2 \\ 0 & 0 & 0 & 0 & -2 & 0 \end{pmatrix}$$
Theorem

If A is skew-symmetric and we obtain B from A by

1. adding a multiple of row i to row j and
2. adding the same multiple of column i to column j

then B is skew-symmetric and $\text{Pf}(A) = \text{Pf}(B)$.

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & 0 \\
\end{pmatrix}
\]

\[
\text{Pf}(\{ F_j \})_3 = \text{Pf}
\]
A Reduction with Row and Column Operations

Theorem

If A is skew-symmetric and we obtain B from A by

1. adding a multiple of row i to row j and
2. adding the same multiple of column i to column j

then B is skew-symmetric and $\text{Pf}(A) = \text{Pf}(B)$.

Conclusion: We can assume $a_j = 0$ for all large j.
The Claw Graph
The Claw Graph
The Claw Graph
The Claw Graph

![Diagram of the Claw Graph with nodes and edges labeled]
The Claw Graph
The Claw Graph
The Claw Graph
The Claw Graph

\begin{enumerate}
 \item [1]
 \item [2]
 \item [3]
 \item [4]
 \item [5]
 \item [6]
 \item [7]
 \item [8]
 \item [9]
 \item [10]
\end{enumerate}
The Claw Graph
The Claw Graph
The Claw Graph
The Claw Graph

Eric S. Egge (Carleton College)

The Pfaffian Transform

August 2, 2012
The Claw Graph
The State Digraph

Definition

The k-claw on $2n$ vertices is the graph with vertices $1, 2, \ldots, 2n$ in which vertices i and j are adjacent whenever $0 < |i - j| \leq k$.
Definition

The k-claw on $2n$ vertices is the graph with vertices $1, 2, \ldots, 2n$ in which vertices i and j are adjacent whenever $0 < |i - j| \leq k$.

Idea

Terms in $\text{Pf}(x_1, \ldots, x_k, 0, \ldots)_n$ are indexed by perfect matchings in the k-claw on $2n$ vertices.
The State Digraph

Definition

The k-claw on $2n$ vertices is the graph with vertices $1, 2, \ldots, 2n$ in which vertices i and j are adjacent whenever $0 < |i - j| \leq k$.

Idea

Terms in $\text{Pf}(x_1, \ldots, x_k, 0, \ldots)_n$ are indexed by perfect matchings in the k-claw on $2n$ vertices.

Idea

These perfect matchings are in bijection with paths in a certain digraph, called the state digraph.
States in the 3-Claw
States in the 4-Claw
The Adjacency Matrix for the 3-Claw

The Adjacency Matrix for the 3-Claw is given by

\[A_3 = \begin{pmatrix} x_1 & x_2 & x_3 & 0 \\ -x_2 & -x_3 & 0 & 0 \\ x_1 & 0 & 0 & -x_3 \\ x_3 & 0 & 0 & 0 \end{pmatrix} \]

Eric S. Egge (Carleton College)
Deus Ex Transfer Matrix Method

Theorem

\[
\sum_{n=1}^{\infty} \text{Pf}(x_1, x_2, \ldots, x_k, 0, \ldots)_n t^n = \frac{\det(l - tA_k; 1, 1)}{\det(l - tA_k)}
\]
Deus Ex Transfer Matrix Method

Theorem

\[\sum_{n=1}^{\infty} \text{Pf}(x_1, x_2, \ldots, x_k, 0, \ldots) n t^n = \frac{\det(l - tA_k; 1, 1)}{\det(l - tA_k)} \]

Corollary

If \{a_j\} satisfies a linear recurrence relation with constant coefficients then so does \text{Pf}(\{a_j\}).
Deus Ex Transfer Matrix Method

Theorem

\[\sum_{n=1}^{\infty} \text{Pf}(x_1, x_2, \ldots, x_k, 0, \ldots) n t^n = \frac{\det(l - tA_k; 1, 1)}{\det(l - tA_k)} \]

Corollary

If \(\{a_j\} \) satisfies a linear recurrence relation with constant coefficients then so does \(\text{Pf}(\{a_j\}) \).

Bonus: We can find the recurrence relation in terms of \(x_1, \ldots, x_k \).
The End

Thank You!